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Abstract

In this paper we develop a probabilistic framework for
pursuit-evasion games. We propose a “greedy” policy
to control a swarm of autonomous agents in the pur-
suit of one or several evaders. At each instant of time
this policy directs the pursuers to the locations that
maximize the probability of finding an evader at that
particular time instant. It is shown that, under mild
assumptions, this policy guarantees that an evader is
found in finite time and that the expected time needed
to find the evader is also finite. Simulations are in-
cluded to illustrate the results.

1 Introduction

This paper addresses the problem of controlling a
swarm of autonomous agents in the pursuit of one or
several evaders. To this effect we develop a probabilis-
tic framework for pursuit-evasion games involving mul-
tiple agents. The problem is nondeterministic because
the motions of the pursuers/evaders and the devices
they use to sense their surroundings require probabilis-
tic models. It is also assumed that when the pursuit
starts only an a priori probabilistic map of the re-
gion is known. A probabilistic framework for pursuit-
evasion games avoids the conservativeness of determin-
istic worst-case approaches.

Pursuit-evasion games arise in numerous situations.
Typical examples are search and rescue operations, lo-
calization of (possibly moving) parts in a warehouse,
search and capture missions, etc. In some cases the
evaders are actively avoiding detection (e.g., search and
capture missions) whereas in other cases their motion
is approximately random (e.g., search and rescue op-
eration). The latter problems are often called games
against nature.

Deterministic pursuit-evasion games on finite graphs
have been well studied [1, 2]. In these games, the re-
gion in which the pursuit takes place is abstracted to
be a finite collection of nodes and the allowed motions
for the pursuers and evaders are represented by edges

1This research was supported by the Office of Naval Research
(grant N00014-97-1-0946).

connecting the nodes. An evader is “captured” if he
and one of the pursuers occupy the same node. A ques-
tion often studied within the context of pursuit-evasion
games on graphs is the computation of the search num-
ber s(G) of a given graph G. By the “search number”
it is meant the smallest number of pursuers needed to
capture a single evader in finite time, regardless of how
the evader decides to move. It turns out that deter-
mining if s(G) is smaller than a given constant is NP-
hard [2, 3]. Pursuit-evasion games on graphs have been
limited to worst-case motions of the evaders.

When a region in which the pursuit takes place is ab-
stracted to a finite graph, the sensing capabilities of
each pursuer becomes restricted to a single node: the
node occupied by the pursuer. The question then arises
of how to decompose a given continuous space F into a
finite number of regions, each to be mapped to a node
in a graph G, so that the game on the resulting finite
graph G is equivalent to the original game played on
F [4, 5]. LaValle et al. [5] propose a method for this
decomposition based on the principle that an evader is
captured if it is in the line-of-sight of one of the pur-
suers. They present algorithms that build finite graphs
that abstract pursuit-evasion games for known polyg-
onal environments [5] and simply-connected, smooth-
curved, two-dimensional environment [6].

So far the literature on pursuit-evasion games always
assumed the region on which the pursuit takes place
(be it a finite graph or a continuous terrain) is known.
When the region is unknown a priori a “map-learning”
phase is often proposed to precede the pursuit. How-
ever, systematic map learning is time consuming and
computationally hard, even for simple two-dimensional
rectilinear environments with each side of the obstacles
parallel to one of the coordinate axis [7]. In practice,
map learning is further complicated by the fact that the
sensors used to acquire the data upon which the map
is built are not accurate. In [8] an algorithm is pro-
posed for maximum likelihood estimation of the map
of a region from noisy observations obtained by a mo-
bile robot.

Our approach differs from others in the literature in
that we combine exploration (or map-learning) and
pursuit in a single problem. Moreover, this is done
in a probabilistic framework to avoid the conservative-
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ness inherent to worst-case assumptions on the motion
of the evader. A probabilistic framework is also natural
to take into account the fact that sensor information is
not precise and that only an inaccurate a priori map of
the terrain may be known [8].

The remaining of this paper is organized as follows:
A probabilistic pursuit-evasion game is formalized in
Section 2, and performance measures for pursuit poli-
cies are proposed. In Section 3 it is shown that pur-
suit policies with a certain “persistency” property are
guaranteed to find an evader in finite time with prob-
ability one. Moreover, the expected time needed to
do this is also finite. In Section 4 specific persistent
policies are proposed for simple multi-pursuers/single-
evader games with inaccurate observations and obsta-
cles. Simulation results are shown in Section 5 for a
two-dimensional pursuit game and Section 6 contains
some concluding remarks and directions for future re-
search. The reader is referred to [9] for the proofs of
some of the results presented here.

Notation: We denote by (Ω,F ,P) the relevant
probability space with Ω the set of all possible events
related to the pursuit-evasion game, F a family of sub-
sets of Ω forming a σ-algebra, and P : F → [0, 1] a
probability measure on F . Given two sets of events
A,B ∈ F with P(B) 6= 0, we write P(A|B) for the con-
ditional probability of A given B. Bold face symbols
are used to denote random variables.

2 Pursuit policies

For simplicity we assume that both space and time
are quantized. The region in which the pursuit takes
place is then regarded as a finite collection of cells
X := {1, 2, . . . , nc} and all events take place on a set of
discrete times T . Here, the events include the motion
and collection of sensor data by the pursers/evaders.
For simplicity of notation we take equally spaced event
times. In particular, T := {1, 2, . . . }.

For each time t ∈ T , we denote by y(t) the set of all
measurements taken by the pursuers at time t. Ev-
ery y(t) is assumed a random variable with values in a
measurement space Y. At each time t ∈ T it is possible
to execute a control action u(t) that, in general, will
affect the pursuers sensing capabilities at times τ ≥ t.
Each control action u(t) is a function of the measure-
ments before time t and should therefore be regarded
as a random variable taking values in a control action
space U .

For each time t ∈ T we denote by Yt ∈ Y∗ the se-
quence1 of measurements {y(1), . . . ,y(t)} taken up to

1Given a set A we denote by A∗ the set of all finite sequences
of elements of A and, given some a ∈ A∗, we denote by |a| the
length of the sequence a.

time t. By the pursuit policy we mean the function
g : Y∗ → U that maps the measurements taken up to
some time to the control action executed at the next
time instant, i.e.,

u(t + 1) = g(Yt), t ∈ T . (1)

Formally, we regard the pursuit policy g as a random
variable and, when we want to study performance of
a specific function ḡ : Y∗ → U as a pursuit policy, we
condition the probability measure to the event g = ḡ.
To shorten the notation, for each A ∈ F , we abbreviate
P(A | g = ḡ) by Pḡ(A). The goal of this paper is
to develop pursuit policies that guarantee some degree
of success for the pursuers. We defer a more detailed
description of the nature of the control actions and the
sensing devices to later.

Take now a specific pursuit policy ḡ : Y∗ → U . Because
the sensors used by the pursuers are probabilistic, in
general it may not be possible to guarantee with prob-
ability one that an evader was found. In practice, we
say that an evader was found at time t ∈ T when one
of the pursuers is located at a cell for which the (condi-
tional) posterior probability of the evader being there,
given the measurements Yt taken by the pursuers up
to t, exceeds a certain threshold pfound ∈ (0, 1]. At each
time instant t ∈ T there is then a certain probability of
one of the evaders being found. We denote by T∗ the
first time instant in T at which one of the evaders is
found, if none is found in finite time we set T∗ = +∞.
T∗ can be regarded as a random variable with values
in T̄ := T ∪ {+∞}. We denote by Fḡ : T̄ → [0, 1] its
distribution function, i.e., Fḡ(t) := Pḡ(T

∗ ≤ t). One
can show [9] that

Fḡ(t) = 1 −

t
∏

τ=1

(

1 − fḡ(τ)
)

, t ∈ T , (2)

where, for each t ∈ T , fḡ(t) denotes the conditional
probability of finding an evader at time t, given that
none was found up to that time, i.e., fḡ(t) := Pḡ(T

∗ =
t | T∗ ≥ t). Moreover, when the probability of T∗

being finite is equal to one,

Eḡ[T
∗] =

∞
∑

t=1

tfḡ(t)

(

t−1
∏

τ=1

(

1 − fḡ(τ)
)

)

. (3)

The expected value of T∗ provides a good measure of
the performance of a pursuit policy. However, since
the dependence of the fḡ on the specific pursuit policy
ḡ is, in general, complex, it may be difficult to mini-
mize Eḡ[T

∗] by choosing an appropriate pursuit policy.
In the next section we concentrate on pursuit policies
that, although not minimizing Eḡ[T

∗], guarantee upper
bounds for this expected value.

Before proceeding we discuss—for the time being at an
abstract level—how to compute fḡ from known models
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for the sensors and the motion of the evader. A more
detailed discussion for a specific game is deferred to
Sections 4 and 5. Since the decision to whether or
not an evader was found at some time t is completely
determined by the measurements taken up to that time,
it is possible to compute the conditional probability
fḡ(t) of finding an evader at time t, given that none
was found up to t − 1, as a function of the conditional
probability of finding an evader for the first time at t,
given the measurements taken up to t− 1. Suppose we
denote by Y¬fnd

τ ⊂ Y∗, τ ∈ T , the set of all sequences
of measurements of length τ , associated with an evader
not being found up to that time, i.e., Y¬fnd

τ = Yτ ({ω ∈
Ω : T∗(ω) > τ}). Since the decision to whether or not
an evader was found up to time τ is purely a function
of the measurements Yτ taken up to τ , we have that
{ω ∈ Ω : T∗(ω) ≥ τ} = {ω ∈ Ω : Yτ−1 ∈ Y¬fnd

τ−1 },
τ ∈ T . We can then expand fḡ(t) as

fḡ(t) = Eḡ[hḡ(Yt−1) | Yt−1 ∈ Y¬fnd

t−1 ], (4)

where hḡ : Y∗ → [0, 1] is a function that maps each
sequence Y ∈ Y∗ of τ := |Y | measurements to the con-
ditional probability of finding an evader for the first
time at τ + 1, given the measurements Yτ = Y taken
up to τ , i.e., hḡ(Y ) := Pḡ(T

∗ = |Y |+1 | Y|Y | = Y ) [9].
This equation allows one to compute the probabilities
fḡ(t) using the function hḡ. The latter effectively en-
codes the information relevant for the pursuit-evasion
game that is contained in the models for the sensors
and for the motion of the evader.

3 Persistent pursuit policies

A specific pursuit policy ḡ : Y∗ → U is said to be
persistent if there is some ε > 0 such that

fḡ(t) ≥ ε, ∀t ∈ T . (5)

From (2) it is clear that, for each t ∈ T , Fḡ(t) is mono-
tone nondecreasing with respect to any of the fḡ(τ),
τ ∈ T . Therefore, for a persistent pursuit policy ḡ,
Fḡ(t) ≥ 1 − (1 − ε)t, t ∈ T , with ε as in (5). From
this we conclude that supt<∞ Fḡ(t) = 1 and there-
fore the probability of T∗ being finite must be equal
to one. The expected value Eḡ[T

∗], on the other hand,
is monotone nonincreasing with respect to any of the
fḡ(t), t ∈ T (cf. equation (3) and Lemma 4 in [9]).
Therefore, for the same pursuit policy we also have
that Eḡ[T

∗] ≤ ε
∑∞

t=1
t(1 − ε)t−1 = ε−1. The following

can then be stated:

Lemma 1 For a persistent pursuit policy ḡ, Pḡ(T
∗ <

∞) = 1, Fḡ(t) ≥ 1− (1− ε)t, t ∈ T , and Eḡ[T
∗] ≤ ε−1,

with ε as in (5).

Often pursuit policies are not persistent in the way de-
fined above but they are persistent on the average. By

this we mean that there is an integer T and some ε > 0
such that, for each t ∈ T , the conditional probability
of finding an evader on the set of T consecutive time
instants starting at t, given that none was found up to
that time, is greater or equal to ε. In particular,

f̄ḡ(t) := Pḡ(T
∗ ∈ {t, t + 1, . . . , t + T − 1}

| T∗ ≥ t) ≥ ε, ∀t ∈ T . (6)

We call T the period of persistence. The following ex-
tension of Lemma 1 is proved in [9]:

Lemma 2 For a persistent on the average pursuit pol-
icy ḡ, with period T , Pḡ(T

∗ < ∞) = 1, Fḡ(t) ≥

1 − (1 − ε)b
t
T c, t ∈ T , and Eḡ[T

∗] ≤ Tε−1, with ε
as in (6).

Lemmas 1 and 2 show that, with persistent policies,
the probability of finding the evader in finite time is
equal to one and the expected time needed to find it
is always finite. Moreover, these lemmas give simple
bounds for the expected value of the time at which the
evader is found. This makes persistent policies very
attractive. It turns out that often it is not hard to
design policies that are persistent. The next section
describes a pursuit-evasion game for which this is the
case. Before proceeding note that a sufficient condition
for (5) to hold—and therefore for ḡ to be persistent—is
that

hḡ(Y ) ≥ ε, ∀t ∈ T , Y ∈ Y¬fnd

t−1 . (7)

This is a direct consequence of (4). A somewhat more
complex condition, also involving hḡ, can be found for
persistency on the average [9].

4 Pursuit-evasion games with partial

observations and obstacles

In the game considered in this section, np pursuers try
to find a single evader. We denote by xe the position
of the evader and by x := {x1,x2, . . . ,xnp

} the posi-
tions of the pursuers. Both the evader and the pursuers
can move and therefore xe and x are time-dependent
quantities. At each time t ∈ T , xe(t) and each xi(t)
are random variables taking values on X .

Some cells contain fixed obstacles and neither the pur-
suers nor evader can move to these cells. The posi-
tions of the obstacles are represented by a function
m : X → {0, 1} that takes the value 1 precisely at
those cells that contain an obstacle. The function m is
called the obstacle map and for each x ∈ X , m(x) is a
random variable. All the m(x) are assumed indepen-
dent. When the game starts only an “a priori obstacle
map” is known. By an a priori obstacle map we mean
a function pm : X → [0, 1] that maps each x ∈ X to
the probability of cell x containing an obstacle, i.e.,
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pm(x) = P
(

m(x) = 1
)

, x ∈ X . This probability is
assumed independent of the pursuit policy.

At each time t ∈ T , the control action u(t) :=
{u1,u2, . . . ,unp

} consists of a list of desired positions
for the pursuers at time t. Two pursuers should
not occupy the same cell, therefore each u(t) must
be an element of the control action space U :=
{

{v1, v2, . . . , vnp
} : vi ∈ X , vi 6= vj for i 6= j

}

.

Each pursuer is capable of determining its current po-
sition and sensing a region around it for obstacles or
the evader but the sensor readings may be inaccurate.
In particular, there is a nonzero probability that a pur-
suer reports the existence of an evader/obstacle in a
nearby cell when there is none, or vice-versa. However,
we assume that the information the pursuers report re-
garding the existence of evaders in the cell that they
are occupying is accurate. In this game we then say
that the evader was found at some time t ∈ T , only
when a pursuer is located at a cell for which the condi-
tional probability of the evader being there, given the
measurements Yt taken up to t, is equal to one.

For the results in this section we do not need to specify
precise probabilistic models for the pursuers sensors nor
for the motion of the evader. However, we will assume
that, for each x ∈ X , Y ∈ Y∗, it is possible to compute
the conditional probability pe(x, Y ) of the evader being
in cell x at time t + 1, given the measurements Yt =
Y taken up to t := |Y |. We also assume that this
probability is independent of the pursuit policy being
used, i.e., for every specific pursuit policy ḡ : Y∗ → U ,
and every x ∈ X , Y ∈ Y∗,

pe(x, Y ) = Pḡ

(

xe(|Y | + 1) = x | Y|Y | = Y
)

. (8)

In practice, this amounts to saying that a model for
the motion of the evader is known, or can be esti-
mated. In [9] it is shown how the function pe can be
efficiently computed when the motion of the evader fol-
lows a Markov model. In fact, we shall see that for
every sequence Yt ∈ Y∗ of t := |Y | ∈ T measurements,
the pe(x, Yt), x ∈ X , can be computed as a determinis-
tic function of the the last measurement y(t) in Yt and
the pe(x, Yt−1), x ∈ X , with Yt−1 ∈ Y∗ denoting the
first t − 1 measurements in Yt. The function pe can
therefore be interpreted as an “information state” for
the game [10].

4.1 Greedy policies with unconstrained motion

We start by assuming that the pursuers are fast enough
to move from any cell to any other cell in a single time
step. When this happens we say that the motion of
the pursuers is unconstrained. By the greedy pursuit
policy with unconstrained motion we mean the policy
gu : Y∗ → U that, at each instant of time t, moves
the pursuers to the positions that maximize the (con-
ditional) posterior probability of finding the evader at
time t + 1, given the measurements Yt = Y taken by

the pursuers up to t, i.e., for each Y ∈ Y∗,

gu(Y ) = arg max
{v1,v2,...,vnp}∈U

np
∑

k=1

pe(vk, Y ). (9)

We show next that this pursuit policy is persistent. To
this effect consider an arbitrary sequence Y ∈ Y¬fnd

t

of t := |Y | measurements for which the evader was
not found. Since the data regarding the existence of an
evader in the same cell as one of the pursuers is assumed
accurate, finding an evader at t + 1 for the first time is
precisely equivalent to having the evader in one of the
cells occupied by a pursuer at t + 1. The conditional
probability hgu

(Y ) of finding the evader for the first
time at t+1, given the measurements Yt = Y ∈ Y¬fnd

t

taken up to t, is then given by

hgu
(Y ) = Pgu

(

∃k ∈ {1, 2, . . . , np} :

xe(t + 1) = uk(t + 1) | Yt = Y
)

.

Moreover, since there is only one evader and all the uk

are distinct, we further conclude that

hgu
(Y ) =

np
∑

k=1

Pgu

(

xe(t + 1) = uk(t + 1) | Yt = Y
)

.

(10)

Let now {v1, v2, . . . , vnp
} := gu(Y ). Because of (1) we

have uk(t + 1) = vk, k ∈ {1, 2, . . . , np}, given that
Yt = Y and g = gu. From this, (8), and (10) we
conclude that hgu

(Y ) =
∑np

k=1
pe(vk, Y ). Because of (9)

and the fact that
∑nc

x=1
pe(x, Y ) = 1, we then obtain

hgu
(Y ) =

np
∑

k=1

pe(vk, Y ) ≥
np

nc

nc
∑

x=1

pe(x, Y ) = ε :=
np

nc

.

(11)

Here we used the fact that, given any set of nc num-
bers, the sum of the largest np ≤ nc of them, is larger or
equal to np/nc times the sum of all of them. From (11)
one concludes that gu is persistent (cf. (7)) and, be-
cause of Lemma 1, we can state the following:

Theorem 1 The greedy pursuit policy with uncon-
strained motion gu is persistent. Moreover, Pgu

(T∗ <

∞) = 1, Fgu
(t) ≥ 1−

(

1 −
np

nc

)t

, t ∈ T , and Egu
[T∗] ≤

nc

np
.

The upper bound on Egu
[T∗] provided by Theorem 1

is independent of the specific model used for the mo-
tion of the evader. In particular, if the evader moves
according to a Markov model (cf. Section 5), the bound
for Egu

[T∗] is independent of the probability ρ of the
evader moving from his present cell to a distinct one (ρ
can be viewed as measure of the “speed” of the evader).
This constitutes an advantage of gu over simpler poli-
cies. For example, with a Markov evader, one could
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be tempted to use a “stay-in-place” policy defined by
gx∗(Y ) = x∗, Y ∈ Y∗, for some fixed x∗ ∈ X . How-
ever, for such a policy Egx∗

[T∗] would increase as the
“speed” of the evader ρ decreases. In fact, in the ex-
treme case of ρ = 0 (evader not moving), the probabil-
ity of finding the evader in finite time would actually
be smaller than one.

4.2 Greedy policies with constrained motion

Suppose now that the motion of each pursuer is con-
strained by that, in a single time step, it can only move
to cells close to its present position. Formally, if at a
time t ∈ T the pursuers are positioned in the cells
v := {v1, v2, . . . , vnp

} ∈ U , we denote by U(v) the sub-
set of U consisting of those lists of cells to which the
pursuers could move at time t + 1, were these cells
empty. We say that the lists of cells in U(v) are reach-
able from v in a single time step. A pursuit policy
ḡ : Y∗ → U is called admissible if, for every sequence
of measurements Y ∈ Y∗, ḡ(Y ) is reachable in a single
time step from the positions v of the pursuers specified
in the last measurement in Y , i.e., ḡ(Y ) ∈ U(v). Al-
though the motion of the pursuers in a single time step
is constrained, we shall assume that their motions are
not constrained over a sufficiently large time interval,
i.e., that the cells without obstacles form a connected
region, with connectivity defined in terms of the al-
lowed motions for the pursuers.

When the motion of the pursuers is constrained, greedy
policies similar to the one defined in Section 4.1 may
not yield a persistent pursuit policy. For example, it
could happen that the probability of existing an evader
in any of the cells to which the pursuers can move is
exactly zero. With constrained motion, the best one
can hope for is to design a pursuit policy that is persis-
tent on the average. To do this we need the following
assumption:

Assumption 1 There is a positive constant γ ≤ 1
such that for any sequence Yt ∈ Y¬fnd

t of t ∈ T mea-
surements for which the evader was not found,

pe(x, Yt) ≥ γpe(x, Yt−1), (12)

for any x ∈ X for which (i) x is not in the list of
pursuers positions specified in the last measurement in
Yt and (ii) Pḡ

(

m(x) = 1 | Yt = Yt

)

< 1, for any
pursuit policy ḡ. In (12), Yt−1 denotes the sequence
consisting of the first t − 1 elements in Yt.

Assumption 1 basically demands that, in a single time
step, the conditional probability of the evader being at
a cell x ∈ X , given the measurements taken up to that
time, does not decay by more than a certain amount.
That is, unless one pursuer reaches x—in which case
the probability of the evader being at x may decay to
zero if the evader is not there—or if it is possible to
conclude from the measured data that an obstacle is at

x with probability one. Such an assumption holds for
most sensor models. The following can then be stated:

Theorem 2 There exists an admissible pursuit policy
that is persistent on the average with period T := d +
no(d − 1), where no denotes the number of obstacles
and d the maximum number of steps needed to travel
from one cell to any other.

The proof of Theorem 2 can be found in [9]. A specific
admissible pursuit policy is also given in this reference.

5 Example

In this section we describe a specific pursuit-evasion
game with partial observations and obstacles to which
the greedy pursuit policies developed in Section 4 can
be applied. In this game the pursuit takes place in a
rectangular two-dimensional grid with nc square cells
numbered from 1 to nc. We say that two distinct cells
x1, x2 ∈ X := {1, 2, · · · , nc} are adjacent if they share
one side or one corner. In the sequel we denote by
A(x) ⊂ X the set of cells adjacent to some cell x ∈ X .
Each A(x) will have, at most, 8 elements. The motion
of the pursuers is constrained in that each pursuer can
only remain in the same cell or move to a cell adjacent
to its present position. This means that if at a time
t ∈ T the pursuers are positioned in the cells v :=
{v1, v2, . . . , vnp

} ∈ U , then the subset of U consisting
of those lists of cells to which the pursuers could move
at time t + 1, were these cells empty, is given by

U(v) :=
{

{v̄1, v̄2, . . . , v̄np
} ∈ U : v̄i ∈ {vi} ∪ A(vi)

}

.

We assume a Markov model for the motion of the
evader. The model is completely determined by a scalar
parameter ρ ∈ [0, 1/8] that represents the probability
of the evader moving from its present position to an
adjacent cell with no obstacles.

Each pursuer is capable of determining its current po-
sition and sensing the cells adjacent to the one it oc-
cupies for obstacles/evader. Each measurement y(t),
t ∈ T , therefore consists of a triple {v(t), e(t),o(t)}
where v(t) ∈ U denotes the measured positions of the
pursuers, e(t) ⊂ X a set of cells where an evader
was detected, and o(t) ⊂ X a set of cells where ob-
stacles were detected. For this game we then have
Y := U×2X×2X , where 2X denotes the power set of X ,
i.e., the set of all subsets of X . For simplicity, we shall
assume that v(t) reflect accurate measurements and
therefore v(t) = x(t), t ∈ T . We also assume that the
detection of the evader is perfect for the cells in which
the pursuers are located, but not for adjacent ones.
The sensor model for evader detection is a function of
two parameters The probability p ∈ [0, 1] of a pursuer
detecting an evader in a cell adjacent to its current po-
sition, given that none was there, and the probability
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q ∈ [0, 1] of not detecting an evader, given that it was
there. We call p the probability of false positives and
q the probability of false negatives. These probabilities
being nonzero reflect the fact that the sensors are not
perfect. For simplicity we shall assume that the sen-
sors used for obstacle detection is perfect in that o(t)
contains precisely those cells adjacent to the pursuers
that contain an obstacle. The reader is referred to [9]
for a detailed description of how to compute the (con-
ditional) posterior probability pe(x, Yt) of the evader
being in cell x at time t + 1, given the measurements
Yt = Yt taken up to time t := |Yt|.

The above game is of the type described in Section 4
with constrained motion for the pursuers. It there-
fore admits the pursuit policy gc described in [9] and
whose existence is guaranteed by Theorem 2. Figure 1
shows a simulation of this pursuit-evasion game with
nc := 400 cells, np := 3 pursuers, ρ = 5%, p = q = 1%,
and pm(x) = 10/400, x ∈ X . In Figure 1, the pur-
suers are represented by light stars, the evader is rep-
resented by a light circle, and the obstacles detected
by the pursuers are represented by dark asterisks. The
background color of each cell x ∈ X encodes pe(x|Yt),
with a light color for low probability and a dark color
for high probability. In some images (e.g., for t = 7)
one can see very high values for pe(x|Yt) near one of
the pursuers, even though the evader is far away. This
is due to false positives given by the sensors.

t=1 t=7

t=11 t=15

Figure 1: Pursuit with the constrained greedy policy.

6 Conclusion

In this paper we propose a probabilistic framework for
pursuit-evasion games that avoids the conservativeness
inherent to deterministic worst-case assumptions on

the motion of the evader. A probabilistic framework
is also natural to take into account the fact that sensor
information is not precise and that only an inaccurate
a priori map of the terrain may be known. We showed
that greedy policies can be used to control a swarm
of autonomous agents in the pursuit of one or several
evaders. These policies guarantee that an evader is
found in finite time and that the expected time needed
to find the evader is also finite. Our current research
involves the design of pursuit policies that are opti-
mal in the sense that they minimize the expected time
needed to find the evader or that they maximize the
probability of finding the evader in a given finite time
interval. We are also applying the results presented
here to games in which the evader is actively avoiding
detection.
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