
The Action Principle 
The form of the Lagrangian is not arbitrary. In fact, it can be derived directly from quantum 
mechanics using the Feynman path integral formulation (as discussed in statistical mechanics). 
However, the Lagrangian can be motivated by introducing the so called action principle, which 
states that a particular functional of all paths that a particle can take between two points is 
extremized along the correct classical solution. The classical action is defined in terms of the 
Lagrangian as follows: Consider a system described by generalized coordinates 1 2 3, ,..., Nq q q q≡  
and velocities 1 2 3, ,..., Nq q q q≡& & & & . Suppose the system moves from point A to point B in time T. At 
t=0, the coordinates and velocites have values [ ](0), (0)q q&  and at T, [ ]( ), ( )q T q T& . The action is 
then defined to be  
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The notation S[q] indicates that the action is a function of the 3N functions 1 3( ),..., ( )Nq t q t . That 
is, S depends on all values of these functions between 0 and T. Hence, it is called a functional. 
Like an ordinary function, functionals can be differentiated and integrated. However, these 
operations must be performed with respect to the function(s) the functional depends on, which 
means the function(s) must be evauated at some particular point when doing the differentiation. 
Likewise, when integrating a functional, it must be integrated with respect to all values the 
function can take on in its full range. We shall see, in particular, how the operation of 
differentiation works in the course of our derivation.  

We will now show that, of all possible paths that the system may follow between A and B, the 
correct path is the one that extremizes the action. In order to show this, let us consider two paths 
q(t) and ( )q t% given by  
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where ( )q tδ  is a small deviation from the path q(t). The path ( )q t%  is required to satisfy the same 
initial and final conditions of q(t), i.e.  
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This means that the deviation satisfies  
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Given these conditions, the problem of extrimizing the action means that we must find where its 
first derivative is equal to 0. Using a finite difference representation, this means  

[ ] [ ] [ ] [ ] 0S S q S q S q q S qδ δ= − = + − =%  

 

Now, since we need to let 0qδ → , we can expand [ ]S q qδ+ to first order in qδ . Remembering 
that q and qδ  are multidimensional, the expansion can be written as  
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The first and last terms cancel leaving only  
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In order to have an expression that depends only on qαδ , we integrate the second term by parts:  
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where the boundary term vanishes because (0) ( ) 0q q Tα αδ δ= = . The deviation, ( )q tδ  is defined 
so that it is not exactly 0 for all t. Thus, in order that 0Sδ = , the term in brackets must vanish.  
This is the Euler-Lagrange condition:  
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Thus, the path that extremizes the action is exactly that which solves the Euler-Lagrange 
equation, which is the classical path. Thus, the correct solution to the classical equations of 
motion also extremizes the action.  

The action principle is more than just a formal device. It has been used by various groups to 
study rare events in chemical processes. The articles by R. Elber and coworkers and Passerone 
and Parrinello show how the action principle can be used in actual computational chemical 
studies. 

  

Procedure for deriving the state transition equation  

The following general procedure can be followed to derive the differential model using 
Lagrangian mechanics. 

1. Determine the degrees of freedom of the system.  Establish your generalized coordinated 
and their derivatives ( ) ( ) ( )1 1 2 2, , , , ... ,n nq q q q q q⎡ ⎤⎣ ⎦& & & .  

2. Express the kinetic energy in terms of your generalized coordinates and their derivatives:  
KE = ( )1 1 2 2, , , ,..., ,n nT q q q q q q& & &   

3. The potential energy is only a function of position, and therefore does not depend on the 
derivatives of the generalized coordinates: PE = ( )1 2, ,..., nU q q q . 

4. Let L T U= −  be the Lagrangian function.  Write the Euler-Lagrange Equation for each 
of your generalized coordinates and their derivatives: 
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