
Game Theory
Lecture #12 – Mixed Nash Equilibria

Focus of Lecture:

� Mixed Strategies

� Best Response Sets

� Mixed Nash Equilibria

1 Introduction

Last lecture focused on investigating strategic decision-making in finite strategic form games.
We introduced the famous solution concept of Nash equilibrium, which can be viewed as an
action profile where all of the players are acting as contingent optimizers. In cases where
a dominant strategy does not exist, we viewed the solution concept of Nash equilibria as
a reasonable description of strategic behavior and focused on analyzing critical questions
associated with this modeling choice pertaining to both the existence and uniqueness of Nash
equilibria. One of the challenges associated with this descriptive modeling choice is that a
Nash equilibrium need not exist in a given game, hence this modeling choice is incomplete
and unsatisfactory. This chapter will focus on resolving this issue by shifting our attention
from pure strategies to mixed strategies.

2 Strategic Form Games with Mixed Strategies

Recall the framework of strategic form games introduced in the last lecture. The specific
components of a strategic form game are as follows:

� Decision-makers: There are a collection of decision-makers, i.e., N = {1, 2, 3, . . . , |N |}.

� Choice Sets: Each decision-maker i ∈ N is associated with a given choice set Ai.

� Joint Choice Sets: The set of joint choices is defined by A = A1 × · · · × An. We
will denote a joint choice by the tuple a = (a1, a2, . . . , an) ∈ A where ai ∈ Ai denotes
the choice of player i. Lastly, we will often express a joint choice profile a by (ai, a−i)
where a−i = (a1, . . . , ai−1, ai+1, . . . , an) encodes the choice of all decision-makers 6= i.
The set of joint choices for all agents 6= i is given by A−i =

∏
j 6=iAj

� Utility Function: Each decision-maker i ∈ N is associated with a given utility
function Ui : A → R that defines her preference over the joint actions A.



This lecture we will focus on extending this framework from pure strategies, i.e., choices
ai ∈ A, to mixed strategies, i.e., pi ∈ ∆(Ai). Specifically, we will consider the following
extension to the framework of strategic form games defined above:

� Mixed Strategies: Each decision-maker i ∈ N is now able to employ a probabilistic
mixed strategy pi ∈ ∆(Ai), where ∆(Ai) denotes the simplex over the finite set Ai.
Given a mixed strategy pi, let paii ≥ 0 denote the probability that agent i selects action
ai ∈ Ai given the mixed strategy pi. Accordingly, by definition we have

∑
ai∈Ai

paii = 1.

� vNM Utility Functions: Given the reliance on mixed strategies, it is imperative
that we extend the agents’ utility functions to account for the randomness in the
agents’ strategies. Accordingly, the goal is to transform the original utility function
Ui : A → R to a extension of the form Ui : ∆(A)→ R, which associates a payoff with
each possible lottery over the joint action profiles A. To that end, we consider the vNM
(Von Neumann and Morgenstern) utility function where this extension is derived under
the belief that (i) each agent i ∈ N is making a decision independently of the other
agents and (ii) the payoff associated with a given lottery is defined by an expectation.
Accordingly, given a mixed strategy profile p = (p1, . . . , pn) where pi ∈ ∆(Ai) for each
agent i ∈ N , we have that

Ui(p1, . . . , pn) =
∑
a∈A

Ui(a)× pa11 × · · · × pann . (1)

We will also refer to vNM preferences as Bernoulli payoffs.

2.1 Potential Issues with vNM Preferences?

Note that vNM utility functions represent one way to extend the original utility function
Ui : A → R to a new utility function of the form Ui : ∆(A) → R. While this seems to be
the most natural extension, it is important to highlight concerns regarding the significance
of the specific payoff values. In particular, in our original setting we utilized payoffs as a
convenient way to encode preferences, i.e., a � a′ if and only if Ui(a) > Ui(a

′). Note though
that the magnitude of the utility played no role in the resulting preferences. For example,
consider the following payoff matrices for the Prisoner’s Dilemma game

C D
C 2, 2 0, 3
D 3, 0 1, 1

C D
C 3, 3 0, 4
D 4, 0 1, 1

Note that each of these payoff matrices encodes exactly the same preferences, e.g., (D,C) �row

(C,C) �row (D,D) �row (C,D). However, these payoff matrices can give rise to different
preference relations over lotteries as the following example shows.

Example 2.1 Consider the following lotteries for the Prisoner’s Dilemma games highlighted
above



C D
C 2/5 3/5
D 0 0

C D
C 0 0
D 0 1

Here, the value in each cell corresponds to the probability that the joint action will be employed
in the given lottery, e.g., for the distribution on the left the joint choice (C,C) will be
chosen with probability 2/5 and (C,D) will be chosen with probability 3/5. Focusing on row
evaluating preference between the two lotteries above, if we employ the left payoff matrix we
have

� Left Distribution: Urow = (2/5)2 + (3/5)0 + (0)3 + (0)1 = 4/5

� Right Distribution: Urow = (0)2 + (0)0 + (0)3 + (1)1 = 1

Hence, row prefers the lottery on the right when employing the payoff matrix on the left
(i.e., 1 > 4/5). If we employ the right payoff matrix we have

� Left Distribution: Urow = (2/5)3 + (3/5)0 + (0)4 + (0)1 = 6/5

� Right Distribution: Urow = (0)3 + (0)0 + (0)4 + (1)1 = 1

Hence, row now prefers the lottery on the left when using the payoff matrix on the right
(i.e., 6/5 > 1).

The above example demonstrates that the actual payoff values now take on heightened im-
portance when using these values to determine preferences over lotteries. This is clearly
problematic, but unfortunately we have minimal options as it is impossible to directly a
specify a payoff for all possible lotteries explicitly without relying on some form of an ex-
tension, like an expectation. While the importance of specific payoff values is problematic,
it turns out that even using the expectation operator is also problematic as shown in the
following example.

Example 2.2 (Allais Paradox) In this example we will seek to understand whether one
can design payoff values such that a desired preference relation over lotteries can be realized
when using expected payoffs. To that end, consider the following two lotteries which involve
the possibility of winning $10 million, $2 million, or $0 million:

$10 $2 $0
0 1 0

A

vs

$10 $2 $0
0.1 0.89 0.01

a

In lottery A, the individual wins $2 million with certainty, while in lottery a the individual
wins $10 million with probability 0.1, $2 million with probability 0.89, and $0 million with
probability 0.01. It turns out that most people prefer lottery A to a. Now, consider two
alternative lotteries of the form



$10 $2 $0
0.1 0 0.9

B

vs

$10 $2 $0
0 0.11 0.89

b

which can be interpreted in a similar fashion. Here, it turns out that most people prefer
lottery B to b. Accordingly, are there utility values U(10), U(2), and U(0) such that when
using the expected value we would get the preference A � a and B � b. Alternatively, what
are the utility values that ensure:

E[A] = 1 · U(2) ≥ 0.1 · U(10) + 0.89 · U(2) + 0.01 · U(0) = E[a]

E[B] = 0.1 · U(10) + 0.9 · U(0) ≥ 0.11 · U(2) + 0.89 · U(0) = E[b]

Focusing on the first expression, if we add the term x = 0.89 · U(0)− 0.89 · U(2) to both the
left and right side we have

1 · U(2) + x = 0.11 · U(2) + 0.89 · U(0)

≥ 0.1 · U(10) + 0.89 · U(2) + 0.01 · U(0) + x

= 0.1 · U(10) + 0.9 · U(0)

which implies that E[b] ≥ E[B]. Hence, it is impossible to assign payoff values U(10), U(2),
and U(0) that ensure the preference relations A � a and B � b when using expectations.

The two examples above demonstrate potential problems when trying to extend utility func-
tions to lotteries by considering expected values. However, the purpose of this exercise is
to recognize that this approach has limitations which we need to fully appreciate so as to
appropriately ground the forthcoming results. Nonetheless, we will continue to use vNM
utilities for this purposes as any particular design of utility functions would suffer from a
similar set of concerns.

2.2 Best response sets and mixed strategy Nash equilibria

Now that we have committed to employing vNM utility function, we will shift our attention to
recasting our definition of best response sets and Nash equilibria in terms of mixed strategies.
We start with the definition of a best response set defined as follows:

Definition 2.1 (Best Response) The best response of player i to the collective strategy of
the other players α−i ∈ ∆(A−i) is of the form

Bi(α−i) = {αi : Ui(αi, α−i) ≥ Ui(α
′
i, α−i) for all α′i ∈ ∆(Ai)} (2)

Once again, note that the best response function is actually a set.

Here, it is important to recognize that the output of this best response function is a set
of mixed strategies that maximize the player’s expected payoff. The following example
highlights the computation of such a best response set.



Example 2.3 Consider a generic two player / two action game with payoff matrix

L R
T a,A b,B
B c, C d,D

Assume mixed strategies are (p, 1 − p) for row and (q, 1 − q) for col. Focusing on row,
the best response to a given col strategy q takes the form

Brow(q) = arg max
p∈[0,1]

(
p
(
q · a+ (1− q) · b

)
+ (1− p)

(
q · c+ (1− q) · d

))
,

which simplifies to

Brow(q) =


1 (q · a+ (1− q) · b) > (q · c+ (1− q) · d)

0 (q · a+ (1− q) · b) < (q · c+ (1− q) · d)

[0, 1] (q · a+ (1− q) · b) = (q · c+ (1− q) · d)

Note that when (q · a+ (1− q) · b) = (q · c+ (1− q) · d), then anything is a best response for
row. One could employ a similar analysis to derive Bcol(p).

We are now ready to state the definition of Nash equilibria over mixed strategies.

Definition 2.2 (Mixed Strategy Nash equilibrium) A mixed strategy profile α∗ = (α∗1, ..., α
∗
n)

is a mixed strategy Nash equilibrium if for every player i ∈ N

α∗i ∈ Bi(α
∗
−i)

Recall that a Nash equilibrium did not necessarily exist in any game, e.g., matching pennies.
The following famous result by John Nash proves that every game has a Nash equilibrium
when considering mixed strategies.

Theorem 2.1 (Nash, 1950) Every strategic form game with vNM preferences in which
each player has finitely many actions has a mixed strategy Nash equilibrium.

Nash’s proof, while beyond the scope of this class, relies on a branch of mathematics per-
taining to advanced fixed point theory. Here, the goal is to find a mixed strategy profile
(α∗1, ..., α

∗
n) such that

α∗ → (B1(·), ..., Bn(·))→ α∗

Such a profile is known as a fixed point, and fixed point theorems are often employed to
argue the existence of such a profile. One simple illustration of a fixed point point theorem
focuses on continuous functions. Suppose you are given a continuous function on the closed
interval [0, 1] that is bounded between [0, 1]. Does there exist a point x ∈ [0, 1] such that
x = f(x), or alternatively does there exists a point x that is a fixed point associated with
the function or operation f(·). While not immediately obvious, fixed point theory can be
employed to answer there question in the affirmative, i.e., there always exists an x ∈ [0, 1]
such that x = f(x) regardless of the continuous function f .



3 Illustrative Example – Hawk versus Dove

We conclude this section by looking at the classic game of Hawk versus Dove. This game is
used is used to model aggressive versus passive behavior, such as in the game of “chicken” or
driver behavior at a traffic intersection. Specifically, we have a two player game with payoff
matrix

H D
H 0, 0 6, 1
D 1, 6 3, 3

where the action H, or hawk, represents aggressive behavior and D, or dove, represents
passive behavior. We begin by characterizing the best response functions over pure strategies,
which take the form

Brow(H) = D & Brow(D) = H

and col has a similar form. Accordingly, there are two Nash equilibria which are (H,D)
and (D,H).

Are there additional mixed strategy Nash equilibria that are not represented by either (H,D)
or (D,H)? To answer this question, we begin by deriving the best response function for mixed
strategies. To that end, for row let Pr [H] = p and Pr [D] = 1−p and for col let Pr [H] = q
and Pr [D] = 1− q. Given that the players select independently, the best response for row
is

Brow(q) = arg max
p∈[0,1]

(
p
(

0 · q + 6 · (1− q)
)

+ (1− p)
(

1 · q + 3 · (1− q)
))

(3)

which takes on the form

Brow(q) =


1

(
0 · q + 6 · (1− q)

)
>
(

1 · q + 3 · (1− q)
)

[0, 1]
(

0 · q + 6 · (1− q)
)

=
(

1 · q + 3 · (1− q)
)

0
(

0 · q + 6 · (1− q)
)
<
(

1 · q + 3 · (1− q)
) =


1 q < 3/4

[0, 1] q = 3/4

0 q > 3/4

Since the two players are symmetric we also have that

Bcol(p) =


1 p < 3/4

[0, 1] p = 3/4

0 p > 3/4

Our goal is to determine a mixed strategy profile (p∗, q∗) such that p∗ ∈ Brow(q∗) and
q∗ ∈ Bcol(p

∗). As done in the previous lecture, we plot the best response curves to aid us in
this process
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Recall that a Nash equilibrium occurs at an intersection of these best response plots. Note
that there are three intersections on this plot, namely (p = 1, q = 0), (p = 0, q = 1),
and (p = 3/4, q = 3/4). The first two intersections highlighted above correspond to the
pure Nash equilibria identified above, e.g., (p = 1, q = 0) captures the pure strategy Nash
equilibrium (H,D). The last intersection covers the new “mixed strategy” Nash equilibrium
(p∗, q∗) = (3/4, 3/4). Here, it is important to notice a key peculiarity about this mixed Nash
equilibria – That is, both players are indifferent, i.e.,

Brow(3/4) = [0, 1] & Bcol(3/4) = [0, 1]

i.e., at this mixed strategy Nash equilibria, the best response for either player is to play
(H,D) with any probability combination. This is known as the indifference phenomena, and
is true for any mixed Nash equilibria in any game.

4 Conclusion

This lecture covered one of the most famous results in game theory. In particular, we
discussed John Nash’s groundbreaking result which ensures the existence of a mixed strategy
Nash equilibrium in any finite strategic form game when using vNM utility functions. Note
that this guarantee is in stark contrast to the existence of pure strategy Nash equilibria,
which might not exist in a given game. Accordingly, from an engineering perspective we can
now rely on mixed strategy Nash equilibria as a reasonable description of societal behavior
without having to worry about whether one exists.

Lastly, we analyzed the hawk dove game which seek to model strategic interaction involving
either passive or aggressive play, such as chicken and driver interactions at an intersections.
Are the pure Nash equilibrium desirable from a societal perspective? Is the mixed strategy
Nash equilibria socially desirable? Are there other outcomes that could lead to more desirable
behavior? If so, how could we justify such outcomes from a game theoretic perspective?



5 Exercises

1. Watch the movie A Beautiful Mind. Explain why the infamous bar scene is not an
example of a Nash equilibrium.

2. Consider the following set of games

� BoS:

B S
B 2, 1 0, 0
S 0, 0 1, 2

� Stag hunt:

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

� Typewriter:

Alt Std
Alt 3, 3 0, 0
Std 0, 0 1, 1

Answer the following questions for each game.

(a) Determine the best response of the row player as a function of strategy of the
column player (q, 1− q).

(b) For what value of q is the row player indifferent between its “top” action versus
its “bottom” action?

(c) Compute all Nash equilibria (both mixed and pure) for each game.



3. Bribes: Two inventors find themselves in a legal battle over a patent. The patent is
worth 20 to each player, so the winner would receive 20 and the loser 0. Given the
norms of the country, it is common to bribe the judge hearing a case. Each player
can offer a bribe secretly, and the one whose bribe is the highest will be awarded the
patent. If both choose not to bribe, or if the bribes are the same amount, then each
has an equal chance of being awarded the patent. If a player does bribe, then they can
either give a bribe of either 9 or 20. Any other number is considered very unlucky, and
the judge would surely rule against a party who offered a different number.

(a) Find the unique pure-strategy Nash equilibrium for this game.

(b) If the norms were different, so that a bribe of 15 was also acceptable, is there a
pure strategy Nash equilibrium?

(c) Find the symmetric mixed-strategy Nash equilibrium for the game with the pos-
sible bribes of 9, 15, and 20.

Notes: Not giving a bribe, i.e., giving a bribe of 0, is an option for parts (a) and
(b). However, to simplify the analysis, it is not an option for part (c) to simplify the
analysis. Also, when you give a bribe you lose that amount even if you are not awarded
the patent.

6 Solutions

1. Watch the movie A Beautiful Mind. Explain was the infamous bar scene is not an
example of a Nash equilibrium.

In Nash’s proposed joint action, each man chooses to dance with one of the blonde’s
friends. However this leaves the blonde without a dance partner, and one man could
choose to unilaterally-deviate to dance with the blonde. The definition of a Nash
equilibrium states that no player will be incentivized to unilaterally deviate, so this is
not a Nash equilibrium.

2. Consider the following set of games

� BoS:

B S
B 2, 1 0, 0
S 0, 0 1, 2

� Stag hunt:

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

� Typewriter:



Alt Std
Alt 3, 3 0, 0
Std 0, 0 1, 1

Answer the following questions for each game.

(a) Determine the best response of the row player as a function of strategy of the
column player (q, 1− q).

(b) For what value of q is the row player indifferent between its “top” action versus
its “bottom” action?

(c) Compute all Nash equilibria (both mixed and pure) for each game.

The following is for stag hunt. The other two are similar.

Stag Hare
Stag 2, 2 0, 1
Hare 1, 0 1, 1

� Suppose the row and column players uses a mixed strategies (p, 1−p) and (q, 1−q),
respectively.

� The best response of the row player is:

Brow(q) =


1 2q > q + (1− q)
[0, 1] 2q = q + (1− q)
0 2q < q + (1− q)

which can be rewritten as

Brow(q) =


1 q > 1/2

[0, 1] q = 1/2

0 q < 1/2

� Because of the symmetry between players, the best response for the column player
is

Bcol(p) =


1 p > 1/2

[0, 1] p = 1/2

0 p < 1/2

� The resulting Nash equilibria in terms of (p∗, q∗) pairs are

(1, 1), (0, 0),&(1/2, 1/2)

This is illustrated in the best response plot:
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3. Bribes: Two players find themselves in a legal battle over a patent. The patent is
worth 20 to each player, so the winner would receive 20 and the loser 0. Given the
norms of the country, it is common to bribe the judge hearing a case. Each player
can offer a bribe secretly, and the one whose bribe is the highest will be awarded the
patent. If both choose not to bribe, or if the bribes are the same amount, then each
has an equal chance of being awarded the patent. If a player does bribe, then the bribe
can be valued at either 9 or 20. Any other number is considered very unlucky, and the
judge would surely rule against a party who offered a different number.

(a) Find the unique pure-strategy Nash equilibrium for this game.

(b) If the norms were different, so that a bribe of 15 was also acceptable, is there a
pure strategy Nash equilibrium?

(c) Find the symmetric mixed-strategy Nash equilibrium for the game with the pos-
sible bribes of 9, 15, and 20.

Notes: Not giving a bribe, i.e., giving a bribe of 0, is an option for parts (a) and
(b). However, to simplify the analysis, it is not an option for part (c) to simplify the
analysis. Also, when you give a bribe you lose that amount even if you are not awarded
the patent.

(a) In setting up the payoff matrix for this game, we note that when the players each
bribe the same amount, they get an expected payoff of 10 minus their bid. The
resulting payoff matrix is therefore

0 9 20
0 10, 10 0, 11 0, 0
9 11, 0 1, 1 −9, 0

20 0, 0 0,−9 −10,−10

Looking through each joint action, we can see that there is a Nash equilibrium at

(a1 = 9, a2 = 9).

(b) If each player now has the option to bid 15, we need to add an extra action for
each player to the payoff matrix:



0 9 15 20
0 10, 10 0, 11 0, 5 0, 0
9 11, 0 1, 1 −9, 15 −9, 0

15 5, 0 5,−9 −5,−5 −15, 0
20 0, 0 0,−9 0,−15 −10,−10

With the addition of this new action, there is no longer a pure Nash equilibrium.

(c) For this part of the problem, we take out the option of bidding zero, and get the
new payoff matrix

9 15 20
(p) 9 1, 1 −9, 15 −9, 0
(q) 15 5,−9 −5,−5 −15, 0

(1-p-q) 20 0,−9 0,−15 −10,−10

To find a Nash equilibrium, we now look for a mixed strategy (p, q, 1 − p − q)
which makes the other player indifferent over their actions, i.e.,

U2(9, (p, q, 1− p− q)) = U2(15, (p, q, 1− p− q)) = U2(20, (p, q, 1− p− q)),
p(1) + q(−9) + (1− p− q)(−9) = p(15) + q(−5) + (1− p− q)(−15)

= p(0) + q(0) + (1− p− q)(−10)

Solving this system of equations gives an equilibrium strategy of (1/2, 1/10, 2/5).


