Introduction to Computer Vision
CS / ECE 181B
Thursday, April 22, 2004

→ Edge detection (HO #5)
→ HW#3 due, next week
→ No office hours today

Edge Detection

• Edge detection is a local area operator that seeks to find significant, meaningful changes in image intensity (color?) that correspond to
 - Boundaries of objects and patterns
 - Texture
 - Changes in object color or brightness
 - Highlights
 - Occlusions
 - Etc.

Useful Mathematics Funcs.

Ramp

\[R(x) = \begin{cases} 0 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases} \]

\[\int dx \]

\[\frac{d}{dx} \]

Step

\[U(x) = \begin{cases} 0 & x < 0 \\ 0 & x = 0 \\ 1 & x > 0 \end{cases} \]

\[\int dx \]

\[\frac{d}{dx} \]

Impulse

\[\delta(x) = \begin{cases} 0 & x < 0 \\ 1 & x = 0 \\ 0 & x > 0 \end{cases} \]

\[\int dx \]

\[\frac{d}{dx} \]

The bad news

• Unfortunately, it’s very hard to tell significant edges from bogus edges!
 - Noise is a big problem!

• An edge detector is basically a high-frequency filter, since sharp intensity changes are high-frequency events

• But image noise is also high-frequency, so edge detectors tend to accentuate noise!

• Some things to do:
 - Smooth before edge detection (hoping to get rid of noise but not edges!)
 - Look for edges at multiple scales (pyramids!)
 - Use an adaptive edge threshold
Caveats

• In reality, low light levels and random noise lead to high fluctuations in individual pixel values, leading to bad estimations.

Edge detection history

• Edge detection has a long history and a huge literature
 – Edge modeling: Step edges, roof edges, impulse edges...
 – Biological modeling: How does human vision do it?
 – Elegant and complex mathematical models
 – Simple and computationally cheap edge detectors
 – Etc., etc., etc.

• Typical usage:
 – Detect "edge points" in the image (filter then threshold)
 – Edges may have magnitude and orientation
 – Throw away "bad" ones (isolated points)
 – Link edge points together to make edge segments
 – Merge segments into lines, corners, junctions, etc.
 – Interpret these higher-level features in the context of the problem

Edge detection

• The bottom line:
 – It doesn’t work!
 – At least, now how we’d like it to:
 • Too many false positives (noise)
 • Too many omissions (little or no local signal)

• Still, edge detection is often the first step in a computer vision program
 – We have to learn to live with imperfection

Edge detectors

• Gradient-based edge detectors
 – Approximate a spatial derivative
 – X and Y directions, or at various orientations
 – Fundamentally high-pass (accentuates noise)

• Laplacian and other band-pass edge detectors

• Roberts, Sobel, Prewitt, Canny, …
Digital Implementations

- 1st order operator - 1x2 or 2x1 mask
 - simple
 - unbalanced (forward differencing)
 - sensitive to noise

\[
\begin{align*}
\frac{\partial E}{\partial x} &= E_{i+1,j} - E_{i,j} \\
\frac{\partial E}{\partial y} &= E_{i,j+1} - E_{i,j}
\end{align*}
\]

Another Implementation

- 2nd order operator - 2x2 mask
 - simple
 - unbalanced (forward differencing)
 - more resistant to noise

\[
\begin{align*}
\frac{\partial E}{\partial x} &\approx \frac{1}{2}((E_{i+1,j+1} - E_{i,j+1}) + (E_{i+1,j} - E_{i,j})) \\
\frac{\partial E}{\partial y} &\approx \frac{1}{2}((E_{i,j+1} - E_{i+1,j}) + (E_{i+1,j+1} - E_{i+1,j}))
\end{align*}
\]

Robert’s detector

- Compute the X- and Y- derivatives using the above masks
- Compute the magnitude of the gradient
- Compute the gradient direction

\[
\begin{align*}
E_x &= \begin{cases} 1 & \text{if } x = 0 \\
-1 & \text{otherwise}
\end{cases} \\
E_y &= \begin{cases} 1 & \text{if } y = 0 \\
-1 & \text{otherwise}
\end{cases}
\end{align*}
\]

Observation in 2D

- 2D 1st order edge operator
 - A magnitude
 - A direction, but ...
 - Edge direction: iso-brightness direction
 - Gradient direction: largest brightness change direction

\[
\text{magnitude} = \sqrt{\left(\frac{\partial E}{\partial x}\right)^2 + \left(\frac{\partial E}{\partial y}\right)^2} \\
\text{direction} = \tan^{-1}\left(\frac{\frac{\partial E}{\partial y}}{\frac{\partial E}{\partial x}}\right)
\]
Gradient vs. Iso-brightness dirs

\[\frac{\partial E}{\partial x} > 0, \frac{\partial E}{\partial y} = 0 \] \[\frac{\partial E}{\partial x} = 0, \frac{\partial E}{\partial y} < 0 \] \[\frac{\partial E}{\partial x} > 0, \frac{\partial E}{\partial y} > 0 \]

\[\tan^{-1}(0 > 0) = 0^\circ \] \[\tan^{-1}(< 0 > 0) = -90^\circ \] \[\tan^{-1}(> 0 > 0) = 0^\circ \rightarrow 90^\circ \]

More Edge detectors

- Sobel detector
 \[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} \]
 \[|G| = G_x^2 + G_y^2 \]
 \[\angle G = \tan \frac{G_y}{G_x} \]

- Prewitt detector
 \[G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \quad G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \]

Edge detectors: second order operators

- Laplacian detectors
 \[\frac{\partial^2 E}{\partial x^2} = \frac{\partial E}{\partial x} \cdot \frac{\partial E}{\partial x} - \frac{\partial E}{\partial y} \cdot \frac{\partial E}{\partial y} \]
 \[= (E_{i+1,j} - E_{i,j}) - (E_{i,j} - E_{i-1,j}) \]
 \[= E_{i+1,j} - 2E_{i,j} + E_{i-1,j} \]
 \[= E_{i,j} + 2E_{i,j} + E_{i,j} \]
 \[\text{Laplacian } \frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} = E_{i-1,j} + E_{i-1,j} + E_{i+1,j} + E_{i+1,j} - 4E_{i,j} \]

Edge detectors are not limited to 3x3 kernels
2nd order operator (cont.)

- **Zero-crossing**
 - if pixel > t and one of its neighbor < -t, or
 - if pixel < -t and one of its neighbor > t

Smoothing Filter

- Differentiation enhances noise (as well as edges).
- Smooth the image before edge detection
 - Helps in minimizing false positives.
 - Edges at different scales.
- Gaussian smoothing: Why?
 - \(G \ast G \) is also a Gaussian
 - Efficient multi-scale convolutions
 - Central limit theorem—smooth many times \(\Rightarrow \) Gaussian smoothing with an appropriate sigma.
 - Gaussians are separable \(\Rightarrow \) good for implementation.
Multiple Scales

- Original image
- σ_1
- σ_2
- σ_3
- σ_4

Gaussian smoothing

\[G = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}} \]

Laplacian

\[\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]

Zero crossing maps

\[\nabla^2 G = \frac{1}{4\pi^2\sigma^4} (1 - \frac{x^2 + y^2}{2\sigma^2}) e^{-\frac{x^2+y^2}{2\sigma^2}} \]

Combined zero crossing maps

Laplacian of the Gaussian (LOG)

- Smooth with the Gaussian + Laplacian + zero-crossing detector = gives edges
- Equivalent to convolving the image with the Laplacian of the Gaussian kernel.
 - Note: differentiation is linear and shit invariant.
 - Convolution is associative.
- Can be well approximated by the Difference of the Gaussians (DoG)
- Marr-Hildreth operator.
Other popular edge detectors

- Canny edge detector
 - Formulate the problem as an optimization problem
 - What is the criteria of good edge detection?
 - Good detection
 - Low probability of misses
 - Low probability of false alarms
 - Good localization
 - Closeness of marked edge points to true edge points
 - Single response criteria
 - Not too many strong responses of a single edge in a small neighborhood
 - Beyond the scope of this course…read the handout for additional information.
Summary of Linear Filtering (HO#4) and Edge Detection (HO #5)

- Convolution (correlation) defines a shift-invariant linear filter
- The Fourier transform is a linear operation that exposes the spatial frequency composition of an image
- Sampling and aliasing are directly related to spatial frequency issues
 - E.g., image pyramids
- Correlation can be viewed as template matching (or pattern matching)
- If the template is a gradient/derivative operator, correlation implements edge detection
- Edge detection by itself doesn’t work very well, although it can be useful if its limitations are understood
 - Noise, missing edges, complex scenes, …