Part I
Number Representation

<table>
<thead>
<tr>
<th>Parts</th>
<th>Chapters</th>
</tr>
</thead>
</table>

Appendix: Past, Present, and Future
About This Presentation

This presentation is intended to support the use of the textbook *Computer Arithmetic: Algorithms and Hardware Designs* (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr. 2008</td>
<td>April 2009</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
I Background and Motivation

Number representation arguably the most important topic:
- Effects on system compatibility and ease of arithmetic
- 2’s-complement, redundant, residue number systems
- Limits of fast arithmetic
- Floating-point numbers to be covered in Chapter 17

<table>
<thead>
<tr>
<th>Topics in This Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Numbers and Arithmetic</td>
</tr>
<tr>
<td>Chapter 2 Representing Signed Numbers</td>
</tr>
<tr>
<td>Chapter 3 Redundant Number Systems</td>
</tr>
<tr>
<td>Chapter 4 Residue Number Systems</td>
</tr>
</tbody>
</table>
“This can’t be right ... It goes into the red!”
1 Numbers and Arithmetic

Chapter Goals

Define scope and provide motivation
Set the framework for the rest of the book
Review positional fixed-point numbers

Chapter Highlights

What goes on inside your calculator?
Ways of encoding numbers in \(k \) bits
Radices and digit sets: conventional, exotic
Conversion from one system to another
Dot notation: a useful visualization tool
Numbers and Arithmetic: Topics

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 What is Computer Arithmetic?</td>
</tr>
<tr>
<td>1.2 Motivating Examples</td>
</tr>
<tr>
<td>1.3 Numbers and Their Encodings</td>
</tr>
<tr>
<td>1.4 Fixed-Radix Positional Number Systems</td>
</tr>
<tr>
<td>1.5 Number Radix Conversion</td>
</tr>
<tr>
<td>1.6 Classes of Number Representations</td>
</tr>
</tbody>
</table>
1.1 What is Computer Arithmetic?

Pentium Division Bug (1994-95): Pentium’s radix-4 SRT algorithm occasionally gave incorrect quotient
First noted in 1994 by Tom Nicely who computed sums of reciprocals of twin primes:

\[\frac{1}{5} + \frac{1}{7} + \frac{1}{11} + \frac{1}{13} + \ldots + \frac{1}{p} + \frac{1}{(p + 2)} + \ldots \]

Worst-case example of division error in Pentium:

\[\frac{4195835}{3145727} = 1.333\,820\,44\ldots \quad \text{Correct quotient} \]

\[\text{circa 1994 Pentium double FLP value; accurate to only 14 bits (worse than single!)} \]
Top Ten Intel Slogans for the Pentium

Humor, circa 1995 (in the wake of Pentium processor’s FDIV bug)

- 9.999 997 325 It’s a FLAW, dammit, not a bug
- 8.999 916 336 It’s close enough, we say so
- 7.999 941 461 Nearly 300 correct opcodes
- 6.999 983 153 You don’t need to know what’s inside
- 5.999 983 513 Redefining the PC — and math as well
- 4.999 999 902 We fixed it, really
- 3.999 824 591 Division considered harmful
- 2.999 152 361 Why do you think it’s called “floating” point?
- 1.999 910 351 We’re looking for a few good flaws
- 0.999 999 999 The errata inside
Aspects of, and Topics in, Computer Arithmetic

Hardware (our focus in this book)
- Design of efficient digital circuits for primitive and other arithmetic operations such as +, −, ×, ÷, √, log, sin, and cos

Issues:
- Algorithms
- Error analysis
- Speed/cost trade-offs
- Hardware implementation
- Testing, verification

General-purpose
- Flexible data paths
- Fast primitive operations like +, −, ×, ÷, √
- Benchmarking

Special-purpose
- Tailored to application
 - areas such as:
 - Digital filtering
 - Image processing
 - Radar tracking

Software
- Numerical methods for solving systems of linear equations, partial differential eq’ns, and so on

Issues:
- Algorithms
- Error analysis
- Computational complexity
- Programming
- Testing, verification

![Image 1.1](image1.1.png)

The scope of computer arithmetic.
1.2 A Motivating Example

Using a calculator with √, x², and xʸ functions, compute:

\[u = \sqrt{\sqrt{\ldots \sqrt{2}}} = 1.000\,677\,131 \quad \text{“1024th root of 2”} \]
\[v = 2^{1/1024} = 1.000\,677\,131 \]

Save \(u \) and \(v \); If you can’t save, recompute values when needed

\[x = (((u^2)^2)\ldots)^2 = 1.999\,999\,963 \]
\[x' = u^{1024} = 1.999\,999\,973 \]
\[y = (((v^2)^2)\ldots)^2 = 1.999\,999\,983 \]
\[y' = v^{1024} = 1.999\,999\,994 \]

Perhaps \(v \) and \(u \) are not really the same value

\[w = v - u = 1 \times 10^{-11} \quad \text{Nonzero due to hidden digits} \]
\[(u - 1) \times 1000 = 0.677\,130\,680 \quad [\text{Hidden ... (0) 68}] \]
\[(v - 1) \times 1000 = 0.677\,130\,690 \quad [\text{Hidden ... (0) 69}] \]
Finite Precision Can Lead to Disaster

Example: Failure of Patriot Missile (1991 Feb. 25)

Source: http://www.ima.umn.edu/~arnold/disasters/disasters.html

American Patriot Missile battery in Dharan, Saudi Arabia, failed to intercept incoming Iraqi Scud missile.
The Scud struck an American Army barracks, killing 28.

Cause, per GAO/IMTEC-92-26 report: “software problem” (inaccurate calculation of the time since boot).

Problem specifics:
Time in tenths of second as measured by the system’s internal clock was multiplied by 1/10 to get the time in seconds.
Internal registers were 24 bits wide.

\[
1/10 = 0.0001\ 1001\ 1001\ 1001\ 1001\ 100 (chopped to 24\ b)
\]

Error \(\approx 0.1100\ 1100 \times 2^{-23} \approx 9.5 \times 10^{-8}\)

Error in 100-hr operation period:

\[
\approx 9.5 \times 10^{-8} \times 100 \times 60 \times 60 \times 10 = 0.34\ s
\]

Distance traveled by Scud = \((0.34\ s) \times (1676\ m/s) \approx 570\ m\)
Inadequate Range Can Lead to Disaster

Example: Explosion of Ariane Rocket (1996 June 4)

Source: http://www.ima.umn.edu/~arnold/disasters/disasters.html

Unmanned Ariane 5 rocket of the European Space Agency veered off its flight path, broke up, and exploded only 30 s after lift-off (altitude of 3700 m)

The $500 million rocket (with cargo) was on its first voyage after a decade of development costing $7 billion

Cause: “software error in the inertial reference system”

Problem specifics:

A 64 bit floating point number relating to the horizontal velocity of the rocket was being converted to a 16 bit signed integer

An SRI* software exception arose during conversion because the 64-bit floating point number had a value greater than what could be represented by a 16-bit signed integer (max 32 767)

*SRI = Système de Référence Inertielle or Inertial Reference System
1.3 Numbers and Their Encodings

Some 4-bit number representation formats

- **Unsigned integer**
- **Signed integer**
- **Signed fraction**
- **2’s-compl fraction**
- **Floating point**
- **Logarithmic**

- **Fixed point, 3+1**
- **Exponent in** \{-2, -1, 0, 1\}
- **Significand in** \{0, 1, 2, 3\}
- **Base-2 logarithm**
Encoding Numbers in 4 Bits

Fig. 1.2 Some of the possible ways of assigning 16 distinct codes to represent numbers. Small triangles denote the radix point locations.
1.4 Fixed-Radix Positional Number Systems

\[(x_{k-1}x_{k-2} \ldots x_1x_0 \cdot x_{-1}x_{-2} \ldots x_{-l})_r = \sum_{i=-l}^{k-1} x_i r^i \]

One can generalize to:

- Arbitrary radix (not necessarily integer, positive, constant)
- Arbitrary digit set, usually \{−α, −α+1, . . . , β−1, β\} = [−α, β]

Example 1.1. Balanced ternary number system:
Radix \(r = 3 \), digit set = [−1, 1]

Example 1.2. Negative-radix number systems:
Radix \(-r\), \(r \geq 2 \), digit set = [0, \(r - 1 \)]
The special case with radix \(-2\) and digit set [0, 1] is known as the negabinary number system.
More Examples of Number Systems

Example 1.3. Digit set $[-4, 5]$ for $r = 10$:

$$(3 \ -1 \ 5)_{\text{ten}} \text{ represents } 295 = 300 - 10 + 5$$

Example 1.4. Digit set $[-7, 7]$ for $r = 10$:

$$(3 \ -1 \ 5)_{\text{ten}} = (3 \ 0 \ -5)_{\text{ten}} = (1 \ -7 \ 0 \ -5)_{\text{ten}}$$

Example 1.7. Quater-imaginary number system:

radix $r = 2j$, digit set $[0, 3]$
1.5 Number Radix Conversion

Whole part Fractional part

\[u = w \cdot v \]
\[
= \left(x_{k-1} x_{k-2} \ldots x_1 x_0 \cdot x_{-1} x_{-2} \ldots x_{-l} \right)_r \\
= \left(X_{K-1} X_{K-2} \ldots X_1 X_0 \cdot X_{-1} X_{-2} \ldots X_{-L} \right)_R
\]

Old New

Example: \((31)_{\text{eight}} = (25)_{\text{ten}}\)

Radix conversion, using arithmetic in the old radix \(r\)

Convenient when converting from \(r = 10\)

Radix conversion, using arithmetic in the new radix \(R\)

Convenient when converting to \(R = 10\)
Radix Conversion: Old-Radix Arithmetic

Converting whole part w:

\[
\begin{array}{c|c|c}
\text{Quotient} & \text{Remainder} \\
105 & 0 \\
21 & 1 \\
4 & 4 \\
0 & \\
\end{array}
\]

Therefore, \((105)_{\text{ten}} = (410)_{\text{five}}\)

Converting fractional part v:

\[
\begin{array}{c|c|c|c}
\text{Whole Part} & \text{Fraction} & .486 & 2 \\
& & .430 & 2 \\
& & .150 & 0 \\
& & .750 & 3 \\
& & .750 & 3 \\
\end{array}
\]

Therefore, \((105.486)_{\text{ten}} \approx (410.22033)_{\text{five}}\)
Radix Conversion: New-Radix Arithmetic

Converting whole part w: \[(22033)_{\text{five}} = (?)_{\text{ten}}\]
\[((((2 \times 5) + 2) \times 5 + 0) \times 5 + 3) \times 5 + 3\]

Converting fractional part v: \[(410.22033)_{\text{five}} = (105.?)_{\text{ten}}\]
\[(0.22033)_{\text{five}} \times 5^5 = (22033)_{\text{five}} = (1518)_{\text{ten}}\]
\[1518 / 5^5 = 1518 / 3125 = 0.48576\]
Therefore, \[(410.22033)_{\text{five}} = (105.48576)_{\text{ten}}\]

Horner’s rule is also applicable: Proceed from right to left and use division instead of multiplication
Horner’s Rule for Fractions

Converting fractional part \(v \): \((0.22033)_{\text{five}} = (?)_{\text{ten}} \)

\[
((((3 / 5) + 3) / 5 + 0) / 5 + 2) / 5 + 2) / 5
\]

0.6
3.6
0.72
2.144
2.4288
0.48576

Horner’s rule or formula

Fig. 1.3 Horner’s rule used to convert \((0.22033)_{\text{five}} \) to decimal.
1.6 Classes of Number Representations

Integers (fixed-point), unsigned: Chapter 1

Integers (fixed-point), signed
 Signed-magnitude, biased, complement: Chapter 2
 Signed-digit, including carry/borrow-save: Chapter 3
 (but the key point of Chapter 3 is using redundancy for faster arithmetic, not how to represent signed values)
Residue number system: Chapter 4
 (again, the key to Chapter 4 is use of parallelism for faster arithmetic, not how to represent signed values)

Real numbers, floating-point: Chapter 17
 Part V deals with real arithmetic

Real numbers, exact: Chapter 20
 Continued-fraction, slash, . . .

For the most part you need:
 – 2’s complement numbers
 – Carry-save representation
 – IEEE floating-point format

However, knowing the rest of the material (including RNS) provides you with more options when designing custom and special-purpose hardware systems
Dot Notation: A Useful Visualization Tool

(a) Addition

(b) Multiplication

Fig. 1.4 Dot notation to depict number representation formats and arithmetic algorithms.
Chapter Goals

Learn different encodings of the sign info
Discuss implications for arithmetic design

Chapter Highlights

Using sign bit, biasing, complementation
Properties of 2’s-complement numbers
Signed vs unsigned arithmetic
Signed numbers, positions, or digits
Extended dot notation: posibits and negabits
Representing Signed Numbers: Topics

Topics in This Chapter

2.1 Signed-Magnitude Representation
2.2 Biased Representations
2.3 Complement Representations
2.4 2’s- and 1’s-Complement Numbers
2.5 Direct and Indirect Signed Arithmetic
2.6 Using Signed Positions or Signed Digits
2.1 Signed-Magnitude Representation

Fig. 2.1 A 4-bit signed-magnitude number representation system for integers.
Fig. 2.2 Adding signed-magnitude numbers using precomplementation and postcomplementation.
2.2 Biased Representations

Fig. 2.3 A 4-bit biased integer number representation system with a bias of 8.
Arithmetic with Biased Numbers

Addition/subtraction of biased numbers

\[x + y + bias = (x + bias) + (y + bias) - bias \]
\[x - y + bias = (x + bias) - (y + bias) + bias \]

A power-of-2 (or \(2^a - 1\)) bias simplifies addition/subtraction

Comparison of biased numbers:

Compare like ordinary unsigned numbers
find true difference by ordinary subtraction

We seldom perform arbitrary arithmetic on biased numbers
Main application: Exponent field of floating-point numbers
2.3 Complement Representations

Fig. 2.4 Complement representation of signed integers.
Arithmetic with Complement Representations

<table>
<thead>
<tr>
<th>Desired operation</th>
<th>Computation to be performed mod M</th>
<th>Correct result with no overflow</th>
<th>Overflow condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(+x) + (+y)$</td>
<td>$x + y$</td>
<td>$x + y$</td>
<td>$x + y > P$</td>
</tr>
<tr>
<td>$(+x) + (–y)$</td>
<td>$x + (M – y)$</td>
<td>$x – y$ if $y \leq x$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M – (y – x)$ if $y > x$</td>
<td></td>
</tr>
<tr>
<td>$(–x) + (+y)$</td>
<td>$(M – x) + y$</td>
<td>$y – x$ if $x \leq y$</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$M – (x – y)$ if $x > y$</td>
<td></td>
</tr>
<tr>
<td>$(–x) + (–y)$</td>
<td>$(M – x) + (M – y)$</td>
<td>$M – (x + y)$</td>
<td>$x + y > N$</td>
</tr>
</tbody>
</table>
Example and Two Special Cases

Example -- complement system for fixed-point numbers:
 Complementation constant $M = 12.000$
 Fixed-point number range $[-6.000, +5.999]$
 Represent -3.258 as $12.000 - 3.258 = 8.742$

Auxiliary operations for complement representations
 complementation or change of sign (computing $M - x$)
 computations of residues mod M

Thus, M must be selected to simplify these operations

Two choices allow just this for fixed-point radix-r arithmetic
 with k whole digits and l fractional digits

 Radix complement $M = r^k$
 Digit complement $M = r^k - ulp$ (aka diminished radix compl)

ulp (unit in least position) stands for r^{-l}
Allows us to forget about l, even for nonintegers
2.4 2’s- and 1’s-Complement Numbers

Fig. 2.5 A 4-bit 2’s-complement number representation system for integers.

Two’s complement = radix complement system for \(r = 2 \)

\[
M = 2^k
\]

\[
2^k - x = [(2^k - ulp) - x] + ulp = x^{compl} + ulp
\]

Range of representable numbers in with \(k \) whole bits:
from \(-2^{k-1}\) to \(2^{k-1} - ulp\)
One’s complement = digit complement (diminished radix complement) system for $r = 2$

$$M = 2^k - ulp$$

$$(2^k - ulp) - x = x^{\text{compl}}$$

Range of representable numbers in with k whole bits:

from $-2^{k-1} + ulp$ to $2^{k-1} - ulp$
Some Details for 2’s- and 1’s Complement

Range/precision extension for 2’s-complement numbers

\[
\ldots x_{k-1} x_{k-1} x_{k-1} x_{k-1} x_{k-2} \ldots x_1 x_0 x_{-1} x_{-2} \ldots x_{-l} 0 0 0 \ldots
\]

\[\leftarrow \text{Sign extension} \rightarrow \text{Sign bit} \leftarrow \text{Extension} \rightarrow \text{LSD} \]

Range/precision extension for 1’s-complement numbers

\[
\ldots x_{k-1} x_{k-1} x_{k-1} x_{k-1} x_{k-2} \ldots x_1 x_0 x_{-1} x_{-2} \ldots x_{-l} x_{k-1} x_{k-1} x_{k-1} \ldots
\]

\[\leftarrow \text{Sign extension} \rightarrow \text{Sign bit} \leftarrow \text{Extension} \rightarrow \text{LSD} \]

Mod-\(2^k\) operation needed in 2’s-complement arithmetic is trivial:
Simply drop the carry-out (subtract \(2^k\) if result is \(2^k\) or greater)

Mod-(\(2^k - ulp\)) operation needed in 1’s-complement arithmetic is done via end-around carry

\[
(x + y) - (2^k - ulp) = (x - y - 2^k) + ulp
\]

Connect \(c_{out}\) to \(c_{in}\)
Which Complement System Is Better?

<table>
<thead>
<tr>
<th>Feature/Property</th>
<th>Radix complement</th>
<th>Digit complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetry ($P = N?$)</td>
<td>Possible for odd r (radices of practical interest are even)</td>
<td>Possible for even r</td>
</tr>
<tr>
<td>Unique zero?</td>
<td>Yes</td>
<td>No, there are two 0s</td>
</tr>
<tr>
<td>Complementation</td>
<td>Complement all digits and add ulp</td>
<td>Complement all digits</td>
</tr>
<tr>
<td>Mod-M addition</td>
<td>Drop the carry-out</td>
<td>End-around carry</td>
</tr>
</tbody>
</table>
Why 2’s-Complement Is the Universal Choice

Fig. 2.7 Adder/subtractor architecture for 2’s-complement numbers.

\[s = x \pm y \]

\[\text{controlled complementation} \]

Can replace this mux with \(k \) XOR gates

0 for addition, 1 for subtraction
Signed-Magnitude vs 2’s-Complement

- Signed-magnitude adder/subtractor is significantly more complex than a simple adder.

- 2’s-complement adder/subtractor needs very little hardware other than a simple adder.
2.5 Direct and Indirect Signed Arithmetic

Direct signed arithmetic is usually faster (not always)
Indirect signed arithmetic can be simpler (not always); allows sharing of signed/unsigned hardware when both operation types are needed
2.6 Using Signed Positions or Signed Digits

A key property of 2’s-complement numbers that facilitates direct signed arithmetic:

\[
x = (1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0)_{\text{two’s-compl}}
\]

\[
-2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0
\]

\[
-128 \quad + \quad 32 \quad + \quad 4 \quad + \quad 2 \quad = -90
\]

Check:

\[
x = (1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0)_{\text{two’s-compl}}
\]

\[
-x = (0 \quad 1 \quad 0 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0)_{\text{two}}
\]

\[
2^7 \quad 2^6 \quad 2^5 \quad 2^4 \quad 2^3 \quad 2^2 \quad 2^1 \quad 2^0
\]

\[
64 \quad + \quad 16 \quad + \quad 8 \quad + \quad 2 \quad = 90
\]

Fig. 2.9 Interpreting a 2’s-complement number as having a negatively weighted most-significant digit.
Associating a Sign with Each Digit

Signed-digit representation: Digit set $[-\alpha, \beta]$ instead of $[0, r - 1]$

Example: Radix-4 representation with digit set $[-1, 2]$ rather than $[0, 3]$

<table>
<thead>
<tr>
<th>Original digits in $[0, 3]$</th>
<th>Rewritten digits in $[-1, 2]$</th>
<th>Transfer digits in $[0, 1]$</th>
<th>Sum digits in $[-1, 3]$</th>
<th>Rewritten digits in $[-1, 2]$</th>
<th>Transfer digits in $[0, 1]$</th>
<th>Sum digits in $[-1, 3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2 0 2 3</td>
<td>-1 1 2 0 2 -1</td>
<td>1 0 0 0 0 1</td>
<td>1 -1 1 2 0 3 -1</td>
<td>-1 1 2 0 -1 -1</td>
<td>0 0 0 0 1 0</td>
<td>1 -1 1 2 1 -1 -1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2.10 Converting a standard radix-4 integer to a radix-4 integer with the nonstandard digit set $[-1, 2]$.
Redundant Signed-Digit Representations

Signed-digit representation: Digit set \([-\alpha, \beta]\), with \(\rho = \alpha + \beta + 1 - r > 0\)

Example: Radix-4 representation with digit set \([-2, 2]\)

Original digits in \([0, 3]\)
1 0 1 0 1 1

Interim digits in \([-2, 1]\)
1 -1 2 -2 1 -1

Transfer digits in \([0, 1]\)
1 0 1 0 1 1

Sum digits in \([-2, 2]\)
1 -1 2 -2 1 -1

Fig. 2.11 Converting a standard radix-4 integer to a radix-4 integer with the nonstandard digit set \([-2, 2]\).

Here, the transfer does not propagate, so conversion is “carry-free”
Extended Dot Notation: Posibits and Negabits

Posibit, or simply bit: positively weighted
Negabit: negatively weighted

● ● ● ● ● ● ● ● ● Unsigned positive-radix number
⊙ ● ● ● ● ● ● ● ● 2’s-complement number
⊙ ● ○ ● ○ ● ○ ● ○ Negative-radix number

Fig. 2.12 Extended dot notation depicting various number representation formats.
Extended Dot Notation in Use

Fig. 2.13 Example arithmetic algorithms represented in extended dot notation.
3 Redundant Number Systems

Chapter Goals

Explore the advantages and drawbacks of using more than r digit values in radix r

Chapter Highlights

Redundancy eliminates long carry chains
Redundancy takes many forms: trade-offs
Redundant/nonredundant conversions
Redundancy used for end values too?
Extended dot notation with redundancy
Redundant Number Systems: Topics

Topics in This Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Coping with the Carry Problem</td>
</tr>
<tr>
<td>3.2</td>
<td>Redundancy in Computer Arithmetic</td>
</tr>
<tr>
<td>3.3</td>
<td>Digit Sets and Digit-Set Conversions</td>
</tr>
<tr>
<td>3.4</td>
<td>Generalized Signed-Digit Numbers</td>
</tr>
<tr>
<td>3.5</td>
<td>Carry-Free Addition Algorithms</td>
</tr>
<tr>
<td>3.6</td>
<td>Conversions and Support Functions</td>
</tr>
</tbody>
</table>
3.1 Coping with the Carry Problem

Ways of dealing with the carry propagation problem:
1. Limit propagation to within a small number of bits (Chapters 3-4)
2. Detect end of propagation; don’t wait for worst case (Chapter 5)
3. Speed up propagation via lookahead etc. (Chapters 6-7)
4. Ideal: Eliminate carry propagation altogether! (Chapter 3)

5 7 8 2 4 9
+ 6 2 9 3 8 9

11 9 17 5 12 18

Operand digits in [0, 9]
Position sums in [0, 18]

But how can we extend this beyond a single addition?
Addition of Redundant Numbers

Position sum decomposition: $[0, 36] = 10 \times [0, 2] + [0, 16]$

Absorption of transfer digit: $[0, 16] + [0, 2] = [0, 18]$

Fig. 3.1 Adding radix-10 numbers with digit set $[0, 18]$.
Meaning of Carry-Free Addition

(a) Ideal single-stage carry-free.
(b) Two-stage carry-free.
(c) Single-stage with lookahead.

(Impossible for positional system with fixed digit set)

Fig. 3.2 Ideal and practical carry-free addition schemes.
Redundancy Index

So, redundancy helps us achieve carry-free addition $-\alpha \beta$

But how much redundancy is actually needed? Is $[0, 11]$ enough for $r = 10$?

Redundancy index $\rho = \alpha + \beta + 1 - r$

For example, $0 + 11 + 1 - 10 = 2$

<table>
<thead>
<tr>
<th></th>
<th>11</th>
<th>10</th>
<th>7</th>
<th>11</th>
<th>3</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>12</td>
<td>16</td>
<td>21</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Operand digits in $[0, 11]$

Position sums in $[0, 22]$

Interim sums in $[0, 9]$

Transfer digits in $[0, 2]$

Sum digits in $[0, 11]$

Fig. 3.3 Adding radix-10 numbers with digit set $[0, 11]$.
3.2 Redundancy in Computer Arithmetic

The more the amount of computation performed between the initial forward conversion and final reverse conversion (reconversion), the greater the benefits of redundant representation.

Same block diagram applies to residue number systems of Chapter 4.
Binary Carry-Save or Stored-Carry Representation

Oldest example of redundancy in computer arithmetic is the stored-carry representation (carry-save addition).

Fig. 3.4 Addition of four binary numbers, with the sum obtained in stored-carry form.
Hardware for Carry-Save Addition

Fig. 3.5 Using an array of independent binary full adders to perform carry-save addition.

Two-bit encoding for binary stored-carry digits used in this implementation:

- 0 represented as 0 0
- 1 represented as 0 1 or as 1 0
- 2 represented as 1 1

Because in carry-save addition, three binary numbers are reduced to two binary numbers, this process is sometimes referred to as 3-2 compression.
We sometimes find it convenient to use an extended dot notation, with heavy dots (●) for posibits and hollow dots (○) for negabits.

Eight-bit, 2’s-complement number

○ ● ● ● ● ● ● ●

Negative-radix number

○ ● ○ ● ○ ● ○ ● ○ ●

BSD number with \(\langle n, p \rangle \) encoding of the digit set \([-1, 1]\)

● ● ● ● ● ● ● ● ●
Example for the Use of Extended Dot Notation

2’s-complement multiplicand
2’s-complement multiplier

Multiplication of 2’s-complement numbers

Option 1: sign extension
\[-x\quad x\quad x\quad x\quad x\]

Option 2: Baugh-Wooley method
\[-x\quad 1-x\]
\[-y\quad 1-y\]
3.3 Digit Sets and Digit-Set Conversions

Example 3.1: Convert from digit set $[0, 18]$ to $[0, 9]$ in radix 10

<table>
<thead>
<tr>
<th>11</th>
<th>9</th>
<th>17</th>
<th>10</th>
<th>12</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9</td>
<td>17</td>
<td>10</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>17</td>
<td>11</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>18</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

18 = 10 (carry 1) + 8
13 = 10 (carry 1) + 3
11 = 10 (carry 1) + 1
18 = 10 (carry 1) + 8
10 = 10 (carry 1) + 0
12 = 10 (carry 1) + 2

Answer; all digits in $[0, 9]$

Note: Conversion from redundant to nonredundant representation always involves carry propagation

Thus, the process is sequential and slow
Conversion from Carry-Save to Binary

Example 3.2: Convert from digit set [0, 2] to [0, 1] in radix 2

\[
\begin{array}{cccccc}
1 & 1 & 2 & 0 & 2 & 0 \\
1 & 1 & 2 & 1 & 0 & 0 \\
1 & 2 & 0 & 1 & 0 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

\[2 = 2 \text{ (carry 1)} + 0\]
Answer; all digits in [0, 1]

Another way: Decompose the carry-save number into two numbers and add them:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]

\[1st \text{ number: sum bits}\]
\[2nd \text{ number: carry bits}\]

\[
\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

Sum
Conversion Between Redundant Digit Sets

Example 3.3: Convert from digit set [0, 18] to [−6, 5] in radix 10 (same as Example 3.1, but with the target digit set signed and redundant)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9</td>
<td>17</td>
<td>10</td>
<td>12</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>17</td>
<td>10</td>
<td>14</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>17</td>
<td>11</td>
<td>4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>18</td>
<td>1</td>
<td>4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-2</td>
<td>1</td>
<td>4</td>
<td>-2</td>
</tr>
</tbody>
</table>

18 = 20 (carry 2) − 2
14 = 10 (carry 1) + 4
11 = 10 (carry 1) + 1
18 = 20 (carry 2) − 2
11 = 10 (carry 1) + 1
12 = 10 (carry 1) + 2

Answer; all digits in [−6, 5]

On line 2, we could have written 14 = 20 (carry 2) − 6; this would have led to a different, but equivalent, representation

In general, several representations may exist for a redundant digit set
Carry-Free Conversion to a Redundant Digit Set

Example 3.4: Convert from digit set \([0, 2]\) to \([-1, 1]\) in radix 2 (same as Example 3.2, but with the target digit set signed and redundant)

Carry-free conversion:

\[
\begin{array}{ccccccc}
1 & 1 & 2 & 0 & 2 & 0 & 0 \\
-1 & -1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
\end{array}
\]

- **Carry-save number**
- **Interim digits in \([-1, 0]\)**
- **Transfer digits in \([0, 1]\)**

Answer:

\[
\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

all digits in \([-1, 1]\)

We rewrite 2 as 2 (carry 1) + 0, and 1 as 2 (carry 1) – 1

A carry of 1 is always absorbed by the interim digit that is in \([-1, 0]\)
3.4 Generalized Signed-Digit Numbers

Radix r
Digit set $[-\alpha, \beta]$
Requirement $\alpha + \beta + 1 \geq r$
Redundancy index $\rho = \alpha + \beta + 1 - r$

Fig. 3.6
A taxonomy of redundant and non-redundant positional number systems.
Encodings for Signed Digits

\[x_i \]
\[\langle s, v \rangle \]
\[2\text{'s-compl} \]
\[\langle n, p \rangle \]
\[\langle n, z, p \rangle \]

- BSD representation of +6
- Sign and value encoding
- 2-bit 2’s-complement
- Negative & positive flags
- 1-out-of-3 encoding

Two of the encodings above can be shown in extended dot notation:

- Posibit \(\{0, 1\} \)
- Negabit \(\{-1, 0\} \)
- Doublebit \(\{0, 2\} \)
- Negadoublebit \(\{-2, 0\} \)
- Unibit \(\{-1, 1\} \)

(a) Extended dot notation
(b) Encodings for a BSD number

Fig. 3.7 Four encodings for the BSD digit set \([-1, 1]\).

Fig. 3.8 Extended dot notation and its use in visualizing some BSD encodings.
Hybrid Signed-Digit Numbers

<table>
<thead>
<tr>
<th>BSD</th>
<th>B</th>
<th>B</th>
<th>BSD</th>
<th>B</th>
<th>B</th>
<th>BSD</th>
<th>B</th>
<th>B</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>(x_i)</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[\begin{align*}
1 & 1 1 2 -2 1 1 \quad -1 1 1 \\
-1 & 0 -1 \\
1 & -1 0
\end{align*}\]

\[\begin{align*}
1 & -1 1 1 0 1 1 -1 1 1 \\
& \quad \text{Fig. 3.9 Example of addition for hybrid signed-digit numbers.}
\end{align*}\]

The hybrid-redundant representation above in extended dot notation:

\[\langle n, p \rangle \text{-encoded} \quad \begin{array}{cccccccc}
\bullet & \bullet & \circ & \bullet & \circ & \bullet & \circ & \bullet & \bullet \\
\bullet & \bullet
\end{array} \quad \text{Nonredundant binary positions} \]
Hybrid Redundancy in Extended Dot Notation

Radix-8 digit set $[-4, 7]$

Radix-8 digit set $[-4, 4]$

Fig. 3.10 Two hybrid-redundant representations in extended dot notation.
3.5 Carry-Free Addition Algorithms

Carry-free addition of GSD numbers

Compute the position sums \(p_i = x_i + y_i \)

Divide \(p_i \) into a transfer \(t_{i+1} \) and interim sum \(w_i = p_i - rt_{i+1} \)

Add incoming transfers to get the sum digits \(s_i = w_i + t_i \)

If the transfer digits \(t_i \) are in \([-\lambda, \mu]\), we must have:

\[
-\alpha + \lambda \leq p_i - rt_{i+1} \leq \beta - \mu
\]

These constraints lead to:

\[
\lambda \geq \alpha / (r - 1) \\
\mu \geq \beta / (r - 1)
\]
Is Carry-Free Addition Always Applicable?

No: It requires one of the following two conditions

a. \(r > 2, \rho \geq 3 \)

b. \(r > 2, \rho = 2, \alpha \neq 1, \beta \neq 1 \) e.g., not \([-1, 10]\) in radix 10

In other words, it is inapplicable for

\(r = 2 \) Perhaps most useful case
\(\rho = 1 \) e.g., carry-save
\(\rho = 2 \) with \(\alpha = 1 \) or \(\beta = 1 \) e.g., carry/borrow-save

BSD fails on at least two criteria!

Fortunately, in the latter cases, a limited-carry addition algorithm is always applicable
Limited-Carry Addition

Example: BSD addition

Estimate, or early warning

Fig. 3.12 Some implementations for limited-carry addition.
Limited-Carry BSD Addition

\[
\begin{array}{cccccc}
1 & -1 & 0 & -1 & 0 & x_i \text{ in } [-1, 1] \\
+ & 0 & -1 & -1 & 0 & 1 & y_i \text{ in } [-1, 1] \\
\hline
1 & -2 & -1 & -1 & 1 & p_i \text{ in } [-2, 2] \\
\end{array}
\]

\[
\begin{array}{cccccc}
\text{high} & \text{low} & \text{low} & \text{low} & \text{high} & \text{high} \\
1 & 0 & 1 & -1 & -1 & e_i \text{ in } \{\text{low: } [-1, 0], \text{ high: } [0, 1]\} \\
0 & -1 & -1 & 0 & 1 & w_i \text{ in } [-1, 1] \\
\hline
0 & 0 & -1 & 1 & 0 & -1 & t_{i+1} \text{ in } [-1, 1] \\
0 & 0 & -1 & 1 & 0 & -1 & s_i \text{ in } [-1, 1] \\
\end{array}
\]

Fig. 3.13 Limited-carry addition of radix-2 numbers with digit set [-1, 1] using carry estimates. A position sum -1 is kept intact when the incoming transfer is in [0, 1], whereas it is rewritten as 1 with a carry of -1 for incoming transfer in [-1, 0]. This guarantees that \(t_i \neq w_i \) and thus \(-1 \leq s_i \leq 1\).
3.6 Conversions and Support Functions

Example 3.10: Conversion from/to BSD to/from standard binary

\[
\begin{array}{cccccc}
1 & -1 & 0 & -1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

BSD representation of +6
Positive part
Negative part
Difference = Conversion result

The negative and positive parts above are particularly easy to obtain if the BSD number has the \(\langle n, p \rangle \) encoding

Conversion from redundant to nonredundant representation always requires full carry propagation

Conversion from nonredundant to redundant is often trivial
Other Arithmetic Support Functions

Zero test: Zero has a unique code under some conditions
Sign test: Needs carry propagation
Overflow: May be real or apparent (result may be representable)

\[\begin{array}{cccccc}
 x_{k-1} & x_{k-2} & \ldots & x_1 & x_0 \\
 y_{k-1} & y_{k-2} & \ldots & y_1 & y_0 \\
 \hline
 p_{k-1} & p_{k-2} & \ldots & p_1 & p_0 \\
 \hline
 w_{k-1} & w_{k-2} & \ldots & w_1 & w_0 \\
 \hline
 t_k & t_{k-1} & \ldots & t_2 & t_1 \\
 \hline
 s_{k-1} & s_{k-2} & \ldots & s_1 & s_0 \\
\end{array} \]

\(k \)-digit GSD operands
Position sums
Interim sum digits
Transfer digits
\(k \)-digit apparent sum

Overflow and its detection in GSD arithmetic.
4 Residue Number Systems

Chapter Goals

Study a way of encoding large numbers as a collection of smaller numbers to simplify and speed up some operations

Chapter Highlights

Moduli, range, arithmetic operations
Many sets of moduli possible: tradeoffs
Conversions between RNS and binary
The Chinese remainder theorem
Why are RNS applications limited?
Residue Number Systems: Topics

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 RNS Representation and Arithmetic</td>
</tr>
<tr>
<td>4.2 Choosing the RNS Moduli</td>
</tr>
<tr>
<td>4.3 Encoding and Decoding of Numbers</td>
</tr>
<tr>
<td>4.4 Difficult RNS Arithmetic Operations</td>
</tr>
<tr>
<td>4.5 Redundant RNS Representations</td>
</tr>
<tr>
<td>4.6 Limits of Fast Arithmetic in RNS</td>
</tr>
</tbody>
</table>
4.1 RNS Representations and Arithmetic

Puzzle, due to the Chinese scholar Sun Tzu, 1500+ years ago:

What number has the remainders of 2, 3, and 2 when divided by 7, 5, and 3, respectively?

Residues (akin to digits in positional systems) uniquely identify the number, hence they constitute a representation.

Pairwise relatively prime moduli: \(m_{k-1} > \ldots > m_1 > m_0 \)

The residue \(x_i \) of \(x \) wrt the \(i \)th modulus \(m_i \) (similar to a digit):

\[
x_i = x \mod m_i = \langle x \rangle_{m_i}
\]

RNS representation contains a list of \(k \) residues or digits:

\[
x = (2 \ | \ 3 \ | \ 2)_{\text{RNS}(7|5|3)}
\]

Default RNS for this chapter: \(\text{RNS}(8 \ | \ 7 \ | \ 5 \ | \ 3) \)
RNS Dynamic Range

Product M of the k pairwise relatively prime moduli is the *dynamic range*

$$M = m_{k-1} \times \ldots \times m_1 \times m_0$$

For RNS(8 | 7 | 5 | 3), $M = 8 \times 7 \times 5 \times 3 = 840$

Negative numbers: Complement relative to M

$$\langle -x \rangle_{m_i} = \langle M - x \rangle_{m_i}$$

$$21 \quad = \quad (5 \mid 0 \mid 1 \mid 0)_{RNS}$$

$$-21 \quad = \quad (8 - 5 \mid 0 \mid 5 - 1 \mid 0)_{RNS} = (3 \mid 0 \mid 4 \mid 0)_{RNS}$$

Here are some example numbers in our default RNS(8 | 7 | 5 | 3):

$(0 \mid 0 \mid 0 \mid 0)_{RNS}$ Represents 0 or 840 or . . .

$(1 \mid 1 \mid 1 \mid 1)_{RNS}$ Represents 1 or 841 or . . .

$(2 \mid 2 \mid 2 \mid 2)_{RNS}$ Represents 2 or 842 or . . .

$(0 \mid 1 \mid 3 \mid 2)_{RNS}$ Represents 8 or 848 or . . .

$(5 \mid 0 \mid 1 \mid 0)_{RNS}$ Represents 21 or 861 or . . .

$(0 \mid 1 \mid 4 \mid 1)_{RNS}$ Represents 64 or 904 or . . .

$(2 \mid 0 \mid 0 \mid 2)_{RNS}$ Represents −70 or 770 or . . .

$(7 \mid 6 \mid 4 \mid 2)_{RNS}$ Represents −1 or 839 or . . .

We can take the range of RNS(8|7|5|3) to be $[-420, 419]$ or any other set of 840 consecutive integers.
RNS as Weighted Representation

For RNS(8 | 7 | 5 | 3), the weights of the 4 positions are:
105 120 336 280

Example: \((1 \mid 2 \mid 4 \mid 0)_{RNS}\) represents the number
\[\langle 105 \times 1 + 120 \times 2 + 336 \times 4 + 280 \times 0 \rangle_{840} = \langle 1689 \rangle_{840} = 9\]

For RNS(7 | 5 | 3), the weights of the 3 positions are:
15 21 70

Example -- Chinese puzzle: \((2 \mid 3 \mid 2)_{RNS(7|5|3)}\) represents the number
\[\langle 15 \times 2 + 21 \times 3 + 70 \times 2 \rangle_{105} = \langle 233 \rangle_{105} = 23\]

We will see later how the weights can be determined for a given RNS
RNS Encoding and Arithmetic Operations

Fig. 4.1 Binary-coded format for RNS(8 | 7 | 5 | 3).

Fig. 4.2 The structure of an adder, subtractor, or multiplier for RNS(8|7|5|3).

Arithmetic in RNS(8 | 7 | 5 | 3)

\[(5 \mid 5 \mid 0 \mid 2)_{RNS}\] Represents \(x = +5\)

\[(7 \mid 6 \mid 4 \mid 2)_{RNS}\] Represents \(y = -1\)

\[(4 \mid 4 \mid 4 \mid 1)_{RNS}\] \(x + y: \langle 5 + 7 \rangle_8 = 4, \langle 5 + 6 \rangle_7 = 4, \text{ etc.}\)

\[(6 \mid 6 \mid 1 \mid 0)_{RNS}\] \(x - y: \langle 5 - 7 \rangle_8 = 6, \langle 5 - 6 \rangle_7 = 6, \text{ etc.}\)

(alternatively, find \(-y\) and add to \(x\))

\[(3 \mid 2 \mid 0 \mid 1)_{RNS}\] \(x \times y: \langle 5 \times 7 \rangle_8 = 3, \langle 5 \times 6 \rangle_7 = 2, \text{ etc.}\)
4.2 Choosing the RNS Moduli

Target range for our RNS: Decimal values [0, 100 000]

Strategy 1: To minimize the largest modulus, and thus ensure high-speed arithmetic, pick prime numbers in sequence

Pick \(m_0 = 2, m_1 = 3, m_2 = 5, \) etc. After adding \(m_5 = 13 \):

\[
\begin{align*}
\text{RNS}(13 | 11 | 7 | 5 | 3 | 2) & \quad \quad M = 30\,030 \quad \text{Inadequate} \\
\text{RNS}(17 | 13 | 11 | 7 | 5 | 3 | 2) & \quad \quad M = 510\,510 \quad \text{Too large} \\
\text{RNS}(17 | 13 | 11 | 7 | 3 | 2) & \quad \quad M = 102\,102 \quad \text{Just right!}
\end{align*}
\]

5 + 4 + 4 + 3 + 2 + 1 = 19 bits

Fine tuning: Combine pairs of moduli 2 & 13 (26) and 3 & 7 (21)

\[
\text{RNS}(26 | 21 | 17 | 11) \quad \quad M = 102\,102
\]
An Improved Strategy

Target range for our RNS: Decimal values [0, 100 000]

Strategy 2: Improve strategy 1 by including powers of smaller primes before proceeding to the next larger prime

<table>
<thead>
<tr>
<th>RNS</th>
<th>Moduli</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^2 \mid 3$</td>
<td>$3^2 \mid 2^3 \mid 7 \mid 5$</td>
<td>$M = 12$</td>
</tr>
<tr>
<td>$3^2 \mid 2^3 \mid 7 \mid 5$</td>
<td>$M = 2520$</td>
<td></td>
</tr>
<tr>
<td>$11 \mid 3^2 \mid 2^3 \mid 7 \mid 5$</td>
<td>$M = 27 720$</td>
<td></td>
</tr>
<tr>
<td>$13 \mid 11 \mid 3^2 \mid 2^3 \mid 7 \mid 5$</td>
<td>$M = 360 360$</td>
<td></td>
</tr>
<tr>
<td>$15 \mid 13 \mid 11 \mid 2^3 \mid 7$</td>
<td>$M = 120 120$</td>
<td></td>
</tr>
</tbody>
</table>

(remove one 3, combine 3 & 5)

$4 + 4 + 4 + 3 + 3 = 18$ bits

Fine tuning: Maximize the size of the even modulus within the 4-bit limit

<table>
<thead>
<tr>
<th>RNS</th>
<th>Moduli</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^4 \mid 13 \mid 11 \mid 3^2 \mid 7 \mid 5$</td>
<td>$M = 720 720$</td>
<td>Too large</td>
</tr>
</tbody>
</table>

We can now remove 5 or 7; not an improvement in this example
Low-Cost RNS Moduli

Target range for our RNS: Decimal values [0, 100 000]

Strategy 3: To simplify the modular reduction \((\text{mod } m_j)\) operations, choose only moduli of the forms \(2^a\) or \(2^a - 1\), aka “low-cost moduli”

\[
\text{RNS}(2^{a_{k-1}} | 2^{a_{k-2}} - 1 | \ldots | 2^{a_1} - 1 | 2^{a_0} - 1)
\]

We can have only one even modulus

\(2^{a_i} - 1\) and \(2^{a_j} - 1\) are relatively prime iff \(a_i\) and \(a_j\) are relatively prime

\[
\begin{align*}
\text{RNS}(2^3 | 2^3 - 1 | 2^2 - 1) & \quad \text{basis: } 3, 2 \quad M = 168 \\
\text{RNS}(2^4 | 2^4 - 1 | 2^3 - 1) & \quad \text{basis: } 4, 3 \quad M = 1680 \\
\text{RNS}(2^5 | 2^5 - 1 | 2^3 - 1 | 2^2 - 1) & \quad \text{basis: } 5, 3, 2 \quad M = 20 832 \\
\text{RNS}(2^5 | 2^5 - 1 | 2^4 - 1 | 2^3 - 1) & \quad \text{basis: } 5, 4, 3 \quad M = 104 160
\end{align*}
\]

Comparison

\[
\begin{align*}
\text{RNS}(15 | 13 | 11 | 2^3 | 7) & \quad \text{18 bits} \quad M = 120 120 \\
\text{RNS}(2^5 | 2^5 - 1 | 2^4 - 1 | 2^3 - 1) & \quad \text{17 bits} \quad M = 104 160
\end{align*}
\]
Low- and Moderate-Cost RNS Moduli

Target range for our RNS: Decimal values \([0, 100\ 000]\)

Strategy 4: To simplify the modular reduction \((\text{mod } m_i)\) operations, choose moduli of the forms \(2^a, 2^a - 1,\) or \(2^a + 1\)

\[
\text{RNS}(2^{a_{k-1}} | 2^{a_{k-2}} \pm 1 | \ldots | 2^{a_1} \pm 1 | 2^{a_0} \pm 1)
\]

We can have only one even modulus

\(2^{a_i} - 1\) and \(2^{a_j} + 1\) are relatively prime

\[
\text{RNS}(2^5 | 2^4 - 1 | 2^4 + 1 | 2^3 - 1) \quad M = 57\ 120
\]

\[
\text{RNS}(2^5 | 2^4 + 1 | 2^3 + 1 | 2^3 - 1 | 2^2 - 1) \quad M = 102\ 816
\]

Neither 5 nor 3 is acceptable

The modulus \(2^a + 1\) is not as convenient as \(2^a - 1\)

(needs an extra bit for residue, and modular operations are not as simple)

Diminished-1 representation of values in \([0, 2^a]\) is a way to simplify things

Represent 0 by a special flag bit and nonzero values by coding one less
Example RNS with Special Moduli

For RNS(17 | 16 | 15), the weights of the 3 positions are:

- 2160
- 3825
- 2176

Example: \((x_2, x_1, x_0) = (2 | 3 | 4)_{\text{RNS}}\) represents the number

\[
\langle 2160 \times 2 + 3825 \times 3 + 2176 \times 4 \rangle_{4080} = \langle 24,499 \rangle_{4080} = 19
\]

\[
2160 = 2^4 \times (2^4 - 1) \times (2^3 + 1) = 2^{11} + 2^7 - 2^4
\]
\[
3825 = (2^8 - 1) \times (2^4 - 1) = 2^{12} - 2^8 - 2^4 + 1
\]
\[
2176 = 2^7 \times (2^4 + 1) = 2^{11} + 2^7
\]
\[
4080 = 2^{12} - 2^4 \; \text{; thus, to subtract 4080, ignore bit 12 and add } 2^4
\]

Reverse converter: Multioperand adder, with shifted \(x_i\)s as inputs
4.3 Encoding and Decoding of Numbers

The more the amount of computation performed between the initial forward conversion and final reverse conversion (reconversion), the greater the benefits of RNS representation.

Example: Digital filter
Conversion from Binary/Decimal to RNS

Example 4.1: Represent the number \(y = (1010 0100)_\text{two} = (164)_{\text{ten}}\) in RNS(8 | 7 | 5 | 3)

The mod-8 residue is easy to find

\[x_3 = \langle y \rangle_8 = (100)_\text{two} = 4\]

We have \(y = 2^7 + 2^5 + 2^2\); thus

\[x_2 = \langle y \rangle_7 = \langle 2 + 4 + 4 \rangle_7 = 3\]

\[x_1 = \langle y \rangle_5 = \langle 3 + 2 + 4 \rangle_5 = 4\]

\[x_0 = \langle y \rangle_3 = \langle 2 + 2 + 1 \rangle_3 = 2\]
Conversion from RNS to Mixed-Radix Form

MRS\((m_{k-1} \mid \ldots \mid m_2 \mid m_1 \mid m_0)\) is a \(k\)-digit positional system with weights

\[
m_{k-2}m_{k-1}m_0 \ldots m_2m_1m_0 \ m_1m_0 \ m_0 \ 1
\]

and digit sets

\[\left[0, m_{k-1}-1\right] \ldots \left[0, m_3-1\right] \left[0, m_2-1\right] \left[0, m_1-1\right] \left[0, m_0-1\right]\]

Example: \((0 \mid 3 \mid 1 \mid 0)_{\text{MRS}(8 \mid 7 \mid 5 \mid 3)} = 0 \times 105 + 3 \times 15 + 1 \times 3 + 0 \times 1 = 48\)

RNS-to-MRS conversion problem:

\[
y = (x_{k-1} \mid \ldots \mid x_2 \mid x_1 \mid x_0)_{\text{RNS}} = (z_{k-1} \mid \ldots \mid z_2 \mid z_1 \mid z_0)_{\text{MRS}}
\]

MRS representation allows magnitude comparison and sign detection

Example: 48 versus 45

\[
(0 \mid 6 \mid 3 \mid 0)_{\text{RNS}} \text{ vs } (5 \mid 3 \mid 0 \mid 0)_{\text{RNS}}
\]

\[
(000 \mid 110 \mid 011 \mid 00)_{\text{RNS}} \text{ vs } (101 \mid 011 \mid 000 \mid 00)_{\text{RNS}}
\]

Equivalent mixed-radix representations

\[
(0 \mid 3 \mid 1 \mid 0)_{\text{MRS}} \text{ vs } (0 \mid 3 \mid 0 \mid 0)_{\text{MRS}}
\]

\[
(000 \mid 011 \mid 001 \mid 00)_{\text{MRS}} \text{ vs } (000 \mid 011 \mid 000 \mid 00)_{\text{MRS}}
\]
Conversion from RNS to Binary/Decimal

Theorem 4.1 (The Chinese remainder theorem)

\[x = (x_{k-1} \mid \ldots \mid x_2 \mid x_1 \mid x_0)_{\text{RNS}} = \left\langle \sum_i M_i \langle \alpha_i x_i/m_i \rangle_M \right\rangle \]

where \(M_i = M/m_i \) and \(\alpha_i = \langle M_i^{-1}/m_i \rangle \) (multiplicative inverse of \(M_i \) wrt \(m_i \))

Implementing CRT-based RNS-to-binary conversion

\[x = \left\langle \sum_i M_i \langle \alpha_i x_i/m_i \rangle_M \right\rangle = \left\langle \sum_i f_i(x_i) \right\rangle_M \]

We can use a table to store the \(f_i \) values — \(\sum_i m_i \) entries

<p>| Table 4.2 | Values needed in applying the Chinese remainder theorem to RNS(8 | 7 | 5 | 3) |
|-----------|---------------------------------|</p>
<table>
<thead>
<tr>
<th>(i)</th>
<th>(m_i)</th>
<th>(x_i)</th>
<th>(\langle M_i \langle \alpha_i x_i/m_i \rangle_M \rangle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>\ldots</td>
<td></td>
</tr>
</tbody>
</table>

Mar. 2020 Computer Arithmetic, Number Representation Slide 83
Intuitive Justification for CRT

Puzzle: What number has the remainders of 2, 3, and 2 when divided by the numbers 7, 5, and 3, respectively?

\[x = (2 \mid 3 \mid 2)_{\text{RNS}(7|5|3)} = (?)_{\text{ten}} \]

\((1 \mid 0 \mid 0)_{\text{RNS}(7|5|3)} = \) multiple of 15 that is 1 mod 7 = 15
\((0 \mid 1 \mid 0)_{\text{RNS}(7|5|3)} = \) multiple of 21 that is 1 mod 5 = 21
\((0 \mid 0 \mid 1)_{\text{RNS}(7|5|3)} = \) multiple of 35 that is 1 mod 3 = 70

\((2 \mid 3 \mid 2)_{\text{RNS}(7|5|3)} = (2 \mid 0 \mid 0) + (0 \mid 3 \mid 0) + (0 \mid 0 \mid 2) \)
\(= 2 \times (1 \mid 0 \mid 0) + 3 \times (0 \mid 1 \mid 0) + 2 \times (0 \mid 0 \mid 1) \)
\(= 2 \times 15 + 3 \times 21 + 2 \times 70 \)
\(= 30 + 63 + 140 \)
\(= 233 = 23 \mod 105 \)

Therefore, \(x = (23)_{\text{ten}} \)
4.4 Difficult RNS Arithmetic Operations

Sign test and magnitude comparison are difficult

Example: Of the following RNS(8 | 7 | 5 | 3) numbers:

Which, if any, are negative?
Which is the largest?
Which is the smallest?

Assume a range of [−420, 419]

\[a = (0 | 1 | 3 | 2)_{\text{RNS}} \]
\[b = (0 | 1 | 4 | 1)_{\text{RNS}} \]
\[c = (0 | 6 | 2 | 1)_{\text{RNS}} \]
\[d = (2 | 0 | 0 | 2)_{\text{RNS}} \]
\[e = (5 | 0 | 1 | 0)_{\text{RNS}} \]
\[f = (7 | 6 | 4 | 2)_{\text{RNS}} \]

Answers:
\[d < c < f < a < e < b \]
\[-70 < -8 < -1 < 8 < 21 < 64 \]
Approximate CRT Decoding

Theorem 4.1 (The Chinese remainder theorem, scaled version)
Divide both sides of CRT equality by M to get scaled version of x in $[0, 1)$

\[
x = (x_{k-1} | \ldots | x_2 | x_1 | x_0)_{\text{RNS}} = \langle \sum_i M_i \langle \alpha_i x_i \rangle_{m_i} \rangle_M
\]

\[
x/M = \langle \sum_i \langle \alpha_i x_i \rangle_{m_i} / m_i \rangle_1 = \langle \sum_i g_i(x_i) \rangle_1
\]

where mod-1 summation implies that we discard the integer parts

Errors can be estimated and kept in check for the particular application

Table 4.3 Values needed in applying the approximate Chinese remainder theorem decoding to RNS(8 | 7 | 5 | 3)

<table>
<thead>
<tr>
<th>i</th>
<th>m_i</th>
<th>x_i</th>
<th>$\langle \alpha_i x_i \rangle_{m_i} / m_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>.0000</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>.1250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>.2500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>.3750</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>:</td>
<td></td>
</tr>
</tbody>
</table>
General RNS Division

General RNS division, as opposed to division by one of the moduli (aka scaling), is difficult; hence, use of RNS is unlikely to be effective when an application requires many divisions.

Scheme proposed in 1994 PhD thesis of Ching-Yu Hung (UCSB): Use an algorithm that has built-in tolerance to imprecision, and apply the approximate CRT decoding to choose quotient digits.

Example — SRT algorithm (s is the partial remainder)

- $s < 0$ quotient digit = -1
- $s \approx 0$ quotient digit = 0
- $s > 0$ quotient digit = 1

The BSD quotient can be converted to RNS on the fly.
4.5 Redundant RNS Representations

Fig. 4.3 Adding a 4-bit ordinary mod-13 residue x to a 4-bit pseudoresidue y, producing a 4-bit mod-13 pseudoresidue z.

Fig. 4.4 A modulo-m multiply-add cell that accumulates the sum into a double-length redundant pseudoresidue.
4.6 Limits of Fast Arithmetic in RNS

Known results from number theory

Theorem 4.2: The ith prime p_i is asymptotically $i \ln i$

Theorem 4.3: The number of primes in $[1, n]$ is asymptotically $n / \ln n$

Theorem 4.4: The product of all primes in $[1, n]$ is asymptotically e^n

Implications to speed of arithmetic in RNS

Theorem 4.5: It is possible to represent all k-bit binary numbers in RNS with $O(k / \log k)$ moduli such that the largest modulus has $O(\log k)$ bits

That is, with fast log-time adders, addition needs $O(\log \log k)$ time
Limits for Low-Cost RNS

Known results from number theory

Theorem 4.6: The numbers $2^a - 1$ and $2^b - 1$ are relatively prime iff a and b are relatively prime

Theorem 4.7: The sum of the first i primes is asymptotically $O(i^2 \ln i)$

Implications to speed of arithmetic in low-cost RNS

Theorem 4.8: It is possible to represent all k-bit binary numbers in RNS with $O((k/\log k)^{1/2})$ low-cost moduli of the form $2^a - 1$ such that the largest modulus has $O((k \log k)^{1/2})$ bits

Because a fast adder needs $O(\log k)$ time, asymptotically, low-cost RNS offers little speed advantage over standard binary
Disclaimer About RNS Representations

RNS representations are sometimes referred to as “carry-free”

Positional representation does not support totally carry-free addition; but it appears that RNS does allow digitwise arithmetic

However . . . even though each RNS digit is processed independently (for +, −, ×), the size of the digit set is dependent on the desired range (grows at least double-logarithmically with the range M, or logarithmically with the word width k in the binary representation of the same range)