Part II

Addition / Subtraction

<table>
<thead>
<tr>
<th>Parts</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Number Representation</td>
<td>1. Numbers and Arithmetic</td>
</tr>
<tr>
<td></td>
<td>2. Representing Signed Numbers</td>
</tr>
<tr>
<td></td>
<td>3. Redundant Number Systems</td>
</tr>
<tr>
<td></td>
<td>4. Residue Number Systems</td>
</tr>
<tr>
<td>II. Addition / Subtraction</td>
<td>5. Basic Addition and Counting</td>
</tr>
<tr>
<td></td>
<td>6. Carry-Lookahead Adders</td>
</tr>
<tr>
<td></td>
<td>7. Variations in Fast Adders</td>
</tr>
<tr>
<td></td>
<td>8. Multioperand Addition</td>
</tr>
<tr>
<td>III. Multiplication</td>
<td>9. Basic Multiplication Schemes</td>
</tr>
<tr>
<td></td>
<td>10. High-Radix Multipliers</td>
</tr>
<tr>
<td></td>
<td>11. Tree and Array Multipliers</td>
</tr>
<tr>
<td></td>
<td>12. Variations in Multipliers</td>
</tr>
<tr>
<td>IV. Division</td>
<td>13. Basic Division Schemes</td>
</tr>
<tr>
<td></td>
<td>14. High-Radix Dividers</td>
</tr>
<tr>
<td></td>
<td>15. Variations in Dividers</td>
</tr>
<tr>
<td></td>
<td>16. Division by Convergence</td>
</tr>
<tr>
<td>V. Real Arithmetic</td>
<td>17. Floating-Point Representations</td>
</tr>
<tr>
<td></td>
<td>18. Floating-Point Operations</td>
</tr>
<tr>
<td></td>
<td>19. Errors and Error Control</td>
</tr>
<tr>
<td></td>
<td>20. Precise and Certifiable Arithmetic</td>
</tr>
<tr>
<td>VI. Function Evaluation</td>
<td>21. Square-Rooting Methods</td>
</tr>
<tr>
<td></td>
<td>22. The CORDIC Algorithms</td>
</tr>
<tr>
<td></td>
<td>23. Variations in Function Evaluation</td>
</tr>
<tr>
<td></td>
<td>24. Arithmetic by Table Lookup</td>
</tr>
<tr>
<td>VII. Implementation Topics</td>
<td>25. High-Throughput Arithmetic</td>
</tr>
<tr>
<td></td>
<td>26. Low-Power Arithmetic</td>
</tr>
<tr>
<td></td>
<td>27. Fault-Tolerant Arithmetic</td>
</tr>
<tr>
<td></td>
<td>28. Reconfigurable Arithmetic</td>
</tr>
</tbody>
</table>

Appendix: Past, Present, and Future
About This Presentation

This presentation is intended to support the use of the textbook *Computer Arithmetic: Algorithms and Hardware Designs* (Oxford U. Press, 2nd ed., 2010, ISBN 978-0-19-532848-6). It is updated regularly by the author as part of his teaching of the graduate course ECE 252B, Computer Arithmetic, at the University of California, Santa Barbara. Instructors can use these slides freely in classroom teaching and for other educational purposes. Unauthorized uses are strictly prohibited. © Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
</table>
II Addition / Subtraction

Review addition schemes and various speedup methods
- Addition is a key op (in itself, and as a building block)
- Subtraction = negation + addition
- Carry propagation speedup: lookahead, skip, select, …
- Two-operand versus multioperand addition

<table>
<thead>
<tr>
<th>Topics in This Part</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 5 Basic Addition and Counting</td>
</tr>
<tr>
<td>Chapter 6 Carry-Lookahead Adders</td>
</tr>
<tr>
<td>Chapter 7 Variations in Fast Adder</td>
</tr>
<tr>
<td>Chapter 8 Multioperand Addition</td>
</tr>
</tbody>
</table>
“You can’t add apples and oranges, son; only the government can do that.”
5 Basic Addition and Counting

Chapter Goals

Study the design of ripple-carry adders, discuss why their latency is unacceptable, and set the foundation for faster adders.

Chapter Highlights

Full adders are versatile building blocks.
Longest carry chain on average: $\log_2 k$ bits.
Fast asynchronous adders are simple.
Counting is relatively easy to speed up.
Key part of a fast adder is its carry network.
Basic Addition and Counting: Topics

Topics in This Chapter

5.1 Bit-Serial and Ripple-Carry Adders
5.2 Conditions and Exceptions
5.3 Analysis of Carry Propagation
5.4 Carry Completion Detection
5.5 Addition of a Constant
5.6 Manchester Carry Chains and Adders
5.1 Bit-Serial and Ripple-Carry Adders

Half-adder (HA): Truth table and block diagram

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Full-adder (FA): Truth table and block diagram

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Half-Adder Implementations

(a) AND/XOR half-adder.

(b) NOR-gate half-adder.

(c) NAND-gate half-adder with complemented carry.

Fig. 5.1 Three implementations of a half-adder.
Full-Adder Implementations

(a) Built of half-adders.

(b) Built as an AND-OR circuit.

(c) Suitable for CMOS realization.

Fig. 5.2 Possible designs for a full-adder in terms of half-adders, logic gates, and CMOS transmission gates.
Full-Adder Implementations

(a) FA built of two HAs

(b) CMOS mux-based FA

(c) Two-level AND-OR FA

Fig. 5.2 (alternate version) Possible designs for a full-adder in terms of half-adders, logic gates, and CMOS transmission gates.
Some Full-Adder Details

Logic equations for a full-adder:

\[s = x \oplus y \oplus c_{in} \]
\[= x y c_{in} \lor x' y' c_{in} \lor x' y c_{in}' \lor x y' c_{in}' \]
\[c_{out} = x y \lor x c_{in} \lor y c_{in} \]

(a) CMOS transmission gate: circuit and symbol

(b) Two-input mux built of two transmission gates

CMOS transmission gate and its use in a 2-to-1 mux.
Full-Adder Realization with Majority Gates

Majority-based logic equations for a full-adder:

\[s = \text{maj}(\text{maj}(x, y, c_{\text{in}}'), c_{\text{in}}, c_{\text{out}}') \]
\[c_{\text{out}} = \text{maj}(x, y, c_{\text{in}}) \]

(majority function)

Majority gates can be used as AND and OR:

\[ab = \text{maj}(a, b, 0) \]
\[a \lor b = \text{maj}(a, b, 1) \]

Using majority gates in the above partially-utilized form is inefficient

Full-adder built of three fully-utilized majority elements.
Simple Adders Built of Full-Adders

Fig. 5.3 Using full-adders in building bit-serial and ripple-carry adders.

(a) Bit-serial adder.

(b) Ripple-carry adder.
Fig. 5.4 The layout of a 4-bit ripple-carry adder in CMOS implementation [Puck94].
Carry Chain on an FPGA

[From: Virtex-5 User Guide]

Two views of Xilinx Virtex-5 ripple-carry adder
Critical Path Through a Ripple-Carry Adder

\[T_{\text{ripple-add}} = T_{\text{FA}}(x, y \rightarrow c_{\text{out}}) + (k - 2) \times T_{\text{FA}}(c_{\text{in}} \rightarrow c_{\text{out}}) + T_{\text{FA}}(c_{\text{in}} \rightarrow s) \]

Fig. 5.5 Critical path in a k-bit ripple-carry adder.
Binary Adders as Versatile Building Blocks

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>c_{out}</td>
</tr>
<tr>
<td>y</td>
<td>c_{out}</td>
</tr>
<tr>
<td>c_{in}</td>
<td>s</td>
</tr>
</tbody>
</table>

- **Set one input to 0:** $c_{out} = \text{AND of other inputs}$
- **Set one input to 1:** $c_{out} = \text{OR of other inputs}$
- **Set one input to 0** and another to 1: $s = \text{NOT of third input}$

Fig. 5.6 Four-bit binary adder used to realize the logic function $f = w \lor xyz$ and its complement.

```
\begin{align*}
    & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
    0 & 1 & w & 1 & z & 0 & y & x \\
    \downarrow & \downarrow \\
    w \lor xyz & \lor \\
    & c_4 & c_3 & c_2 & c_1 & c_0 & 0 & 0 \\
    \downarrow & \downarrow \\
    \left( w \lor xyz \right)' \\
\end{align*}
```
5.2 Conditions and Exceptions

Fig. 5.7 Two’s-complement adder with provisions for detecting conditions and exceptions.

\[
\text{overflow}_{2's-compl} = x_{k-1} \ y_{k-1} \ s_{k-1} \ \lor \ x_{k-1}' \ y_{k-1}' \ s_{k-1}
\]

\[
\text{overflow}_{2's-compl} = c_k \oplus c_{k-1} = c_k \ c_{k-1}' \lor c_k' \ c_{k-1}
\]
Saturating Adders

Saturating (saturation) arithmetic:
When a result’s magnitude is too large, do not wrap around; rather, provide the most positive or the most negative value that is representable in the number format

Example – In 8-bit 2’s-complement format, we have:
120 + 26 → 18 (wraparound); 120 + _sat_ 26 → 127 (saturating)

Saturating arithmetic in desirable in many DSP applications

Designing saturating adders

Unsigned (quite easy)

Signed (only slightly harder)
5.3 Analysis of Carry Propagation

Bit positions

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Carry chains and their lengths

c_{out}

c_{in}

Fig. 5.8 Example addition and its carry propagation chains.
Using Probability to Analyze Carry Propagation

Given binary numbers with random bits, for each position i we have

- Probability of carry generation = $\frac{1}{4}$ (both 1s)
- Probability of carry annihilation = $\frac{1}{4}$ (both 0s)
- Probability of carry propagation = $\frac{1}{2}$ (different)

Probability that carry generated at position i propagates through position $j-1$ and stops at position j ($j > i$)

$$2^{-(j-i)} \times \frac{1}{2} = 2^{-(j-i)}$$

Expected length of the carry chain that starts at position i

$$2 - 2^{-(k-i-1)}$$

Average length of the longest carry chain in k-bit addition is strictly less than $\log_2 k$; it is $\log_2 (1.25k)$ per experimental results

Analogy: Expected number when rolling one die is 3.5; if one rolls many dice, the expected value of the largest number shown grows
5.4 Carry Completion Detection

From other bit positions

\[
\begin{align*}
0 0 & \quad \text{Carry not yet known} \\
0 1 & \quad \text{Carry known to be 1} \\
1 0 & \quad \text{Carry known to be 0}
\end{align*}
\]

Fig. 5.9 The carry network of an adder with two-rail carries and carry completion detection logic.
5.5 Addition of a Constant: Counters

Fig. 5.10 An up (down) counter built of a register, an incrementer (decrementer), and a multiplexer.
Implementing a Simple Up Counter

(Fm arch text) Ripple-carry incrementer for use in an up counter.

Fig. 5.11 Four-bit asynchronous up counter built only of negative-edge-triggered T flip-flops.
Faster and Constant-Time Counters

Any fast adder design can be specialized and optimized to yield a fast counter (carry-lookahead, carry-skip, etc.)

One can use redundant representation to build a constant-time counter, but a conversion penalty must be paid during read-out

Count register divided into three stages

Fig. 5.12 Fast (constant-time) three-stage up counter.
5.6 Manchester Carry Chains and Adders

Sum digit in radix r

$$s_i = (x_i + y_i + c_i) \mod r$$

Special case of radix 2

$$s_i = x_i \oplus y_i \oplus c_i$$

Computing the carries c_i is thus our central problem. For this, the actual operand digits are not important. What matters is whether in a given position a carry is

- generated,
- propagated,
- or annihilated (absorbed)

For binary addition:

$$g_i = x_i \cdot y_i \quad p_i = x_i \oplus y_i \quad a_i = x_i' \cdot y_i' = (x_i \lor y_i)'$$

It is also helpful to define a transfer signal:

$$t_i = g_i \lor p_i = a_i' = x_i \lor y_i$$

Using these signals, the carry recurrence is written as

$$c_{i+1} = g_i \lor c_i p_i = g_i \lor c_i g_i \lor c_i p_i = g_i \lor c_i t_i$$
Manchester Carry Network

The worst-case delay of a Manchester carry chain has three components:

1. Latency of forming the switch control signals
2. Set-up time for switches
3. Signal propagation delay through k switches

(a) Conceptual representation

(b) Possible CMOS realization.

Fig. 5.13 One stage in a Manchester carry chain.
Details of a 5-Bit Manchester Carry Network

Dynamic logic, with 2-phase operation
Clock low: Precharge \((c_i = 0)\)
Clock high: Pull-down (if \(g_i = 1\))

The transistors must be sized appropriately for maximum speed

Smaller transistors

Larger transistors

Carry chain of a 5-bit Manchester adder.
Carry Network is the Essence of a Fast Adder

Carry is:

\[
g_i = x_i y_i \\
p_i = x_i \oplus y_i
\]

Fig. 5.14 Generic structure of a binary adder, highlighting its carry network.
Ripple-Carry Adder Revisited

The carry recurrence: \(c_{i+1} = g_i \lor p_i c_i \)

Latency of \(k \)-bit adder is roughly \(2k \) gate delays:

1 gate delay for production of \(p \) and \(g \) signals, plus
2\((k – 1)\) gate delays for carry propagation, plus
1 XOR gate delay for generation of the sum bits

Fig. 5.15 Alternate view of a ripple-carry network in connection with the generic adder structure shown in Fig. 5.14.
The Complete Design of a Ripple-Carry Adder

<table>
<thead>
<tr>
<th>g_i</th>
<th>p_i</th>
<th>Carry is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>annihilated or killed</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>propagated</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>generated</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(impossible)</td>
</tr>
</tbody>
</table>

Carry is:

$$g_i = x_i \cdot y_i$$

$$p_i = x_i \oplus y_i$$

Fig. 5.15 (ripple-carry network) superimposed on Fig. 5.14 (generic adder).
Chapter Goals

Understand the carry-lookahead method and its many variations used in the design of fast adders

Chapter Highlights

Single- and multilevel carry lookahead
Various designs for log-time adders
Relating the carry determination problem to parallel prefix computation
Implementing fast adders in VLSI
Topics in This Chapter

6.1 Unrolling the Carry Recurrence
6.2 Carry-Lookahead Adder Design
6.3 Ling Adder and Related Designs
6.4 Carry Determination as Prefix Computation
6.5 Alternative Parallel Prefix Networks
6.6 VLSI Implementation Aspects
6.1 Unrolling the Carry Recurrence

Recall the *generate*, *propagate*, *annihilate* (absorb), and *transfer* signals:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Radix r</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_i</td>
<td>is 1 iff $x_i + y_i \geq r$</td>
<td>x_i , y_i</td>
</tr>
<tr>
<td>p_i</td>
<td>is 1 iff $x_i + y_i = r - 1$</td>
<td>$x_i \oplus y_i$</td>
</tr>
<tr>
<td>a_i</td>
<td>is 1 iff $x_i + y_i < r - 1$</td>
<td>$x_i'y_i' = (x_i \lor y_i)'$</td>
</tr>
<tr>
<td>t_i</td>
<td>is 1 iff $x_i + y_i \geq r - 1$</td>
<td>$x_i \lor y_i$</td>
</tr>
<tr>
<td>s_i</td>
<td>$(x_i + y_i + c_i) \mod r$</td>
<td>$x_i \oplus y_i \oplus c_i$</td>
</tr>
</tbody>
</table>

The carry recurrence can be unrolled to obtain each carry signal directly from inputs, rather than through propagation:

\[
c_i = g_{i-1} \lor c_{i-1}p_{i-1} \\
 = g_{i-1} \lor (g_{i-2} \lor c_{i-2}p_{i-2})p_{i-1} \\
 = g_{i-1} \lor g_{i-2}p_{i-1} \lor c_{i-2}p_{i-2}p_{i-1} \\
 = g_{i-1} \lor g_{i-2}p_{i-1} \lor g_{i-3}p_{i-2}p_{i-1} \lor c_{i-3}p_{i-3}p_{i-2}p_{i-1} \\
 = g_{i-1} \lor g_{i-2}p_{i-1} \lor g_{i-3}p_{i-2}p_{i-1} \lor g_{i-4}p_{i-3}p_{i-2}p_{i-1} \lor c_{i-4}p_{i-4}p_{i-3}p_{i-2}p_{i-1} \\
 = \ldots
\]
Theoretically, it is possible to derive each sum digit directly from the inputs that affect it.

Carry-lookahead adder design is simply a way of reducing the complexity of this ideal, but impractical, arrangement by hardware sharing among the various lookahead circuits.
Four-Bit Carry-Lookahead Adder

Complexity reduced by deriving the carry-out indirectly

Full carry lookahead is quite practical for a 4-bit adder

\[c_1 = g_0 \lor c_0 p_0 \]
\[c_2 = g_1 \lor g_0 p_1 \lor c_0 p_0 p_1 \]
\[c_3 = g_2 \lor g_1 p_2 \lor g_0 p_1 p_2 \lor c_0 p_0 p_1 p_2 \]
\[c_4 = g_3 \lor g_2 p_3 \lor g_1 p_2 p_3 \lor g_0 p_1 p_2 p_3 \lor c_0 p_0 p_1 p_2 p_3 \]

Fig. 6.1 Four-bit carry network with full lookahead.
Consider a 32-bit adder

\[c_1 = g_0 \lor c_0 p_0 \]
\[c_2 = g_1 \lor g_0 p_1 \lor c_0 p_0 p_1 \]
\[c_3 = g_2 \lor g_1 p_2 \lor g_0 p_1 p_2 \lor c_0 p_0 p_1 p_2 \]
\[\vdots \]
\[c_{31} = g_{30} \lor g_{29} p_{30} \lor g_{28} p_{29} p_{30} \lor g_{27} p_{28} p_{29} p_{30} \lor \cdots \lor c_0 p_0 p_1 p_2 p_3 \cdots p_{29} p_{30} \]

No circuit sharing: Repeated computations

32-input AND

32-input OR

High fan-ins necessitate tree-structured circuits
Two Solutions to the Fan-in Problem

High-radix addition (i.e., radix 2^h)

Increases the latency for generating g and p signals and sum digits, but simplifies the carry network (optimal radix?)

Multilevel lookahead

Example: 16-bit addition

Radix-16 (four digits)

Two-level carry lookahead (four 4-bit blocks)

Either way, the carries c_4, c_8, and c_{12} are determined first

\[
\begin{align*}
&c_{16} & c_{15} & c_{14} & c_{13} & c_{12} & c_{11} & c_{10} & c_9 & c_8 & c_7 & c_6 & c_5 & c_4 & c_3 & c_2 & c_1 & c_0 \\
\]
6.2 Carry-Lookahead Adder Design

Block *generate* and *propagate* signals

\[
g_{[i,i+3]} = g_{i+3} \lor g_{i+2}p_{i+3} \lor g_{i+1}p_{i+2}p_{i+3} \lor g_ip_{i+1}p_{i+2}p_{i+3}
\]

\[
p_{[i,i+3]} = p_i p_{i+1}p_{i+2}p_{i+3}
\]

Fig. 6.2b Schematic diagram of a 4-bit lookahead carry generator.
A Building Block for Carry-Lookahead Addition

Fig. 6.1 A 4-bit carry network

Fig. 6.2a A 4-bit lookahead carry generator

Block Signal Generation
Intermediate Carries
Combining Block g and p Signals

Block *generate* and *propagate* signals can be combined in the same way as bit g and p signals to form g and p signals for wider blocks.

Fig. 6.3 Combining of g and p signals of four (contiguous or overlapping) blocks of arbitrary widths into the g and p signals for the overall block $[i_0, j_3]$.
A Two-Level Carry-Lookahead Adder

Fig. 6.4 Building a 64-bit carry-lookahead adder from 16 4-bit adders and 5 lookahead carry generators.

Carry-out: \[c_{\text{out}} = g_{[0, k-1]} \lor c_0 \lor p_{[0, k-1]} = x_{k-1} y_{k-1} \lor s_{k-1}' \lor (x_{k-1} \lor y_{k-1}) \]
Latency of a Multilevel Carry-Lookahead Adder

Latency through the 16-bit CLA adder consists of finding:

- g and p for individual bit positions \(1\) gate level
- g and p signals for 4-bit blocks \(2\) gate levels
- Block carry-in signals c_4, c_8, and c_{12} \(2\) gate levels
- Internal carries within 4-bit blocks \(2\) gate levels
- Sum bits \(2\) gate levels

Total latency for the 16-bit adder \(9\) gate levels

(compare to 32 gate levels for a 16-bit ripple-carry adder)

Each additional lookahead level adds 4 gate levels of latency

Latency for k-bit CLA adder: \[T_{\text{lookahead-add}} = 4 \log_4 k + 1 \text{ gate levels} \]
6.3 Ling Adder and Related Designs

Consider the carry recurrence and its unrolling by 4 steps:
\[
c_i = g_{i-1} \lor c_{i-1} t_{i-1} \\
= g_{i-1} \lor g_{i-2} t_{i-1} \lor g_{i-3} t_{i-2} t_{i-1} \lor g_{i-4} t_{i-3} t_{i-2} t_{i-1} \lor c_{i-4} t_{i-3} t_{i-2} t_{i-1}
\]

Ling’s modification: Propagate \(h_i = c_i \lor c_{i-1} \) instead of \(c_i \)
\[
h_i = g_{i-1} \lor h_{i-1} t_{i-2} \\
= g_{i-1} \lor g_{i-2} \lor g_{i-3} t_{i-2} \lor g_{i-4} t_{i-3} t_{i-2} \lor h_{i-4} t_{i-3} t_{i-2}
\]

CLA: 5 gates max 5 inputs 19 gate inputs
Ling: 4 gates max 5 inputs 14 gate inputs

The advantage of \(h_i \) over \(c_i \) is even greater with wired-OR:

CLA: 4 gates max 5 inputs 14 gate inputs
Ling: 3 gates max 4 inputs 9 gate inputs

Once \(h_i \) is known, however, the sum is obtained by a slightly more complex expression compared with \(s_i = p_i \oplus c_i \)
\[
s_i = p_i \oplus h_i t_{i-1}
\]
6.4 Carry Determination as Prefix Computation

Fig. 6.5 Combining of g and p signals of two (contiguous or overlapping) blocks B' and B" of arbitrary widths into the g and p signals for block B.
Formulating the Prefix Computation Problem

The problem of carry determination can be formulated as:

Given \((g_0, p_0)\) \((g_1, p_1)\) \(\ldots\) \((g_{k-2}, p_{k-2})\) \((g_{k-1}, p_{k-1})\)

Find \((g_{[0,0]}, p_{[0,0]})\) \((g_{[0,1]}, p_{[0,1]})\) \(\ldots\) \((g_{[0,k-2]}, p_{[0,k-2]})\) \((g_{[0,k-1]}, p_{[0,k-1]})\)

\[c_1\] \[c_2\] \(\ldots\) \[c_{k-1}\] \[c_k\]

Carry-in can be viewed as an extra \((-1)\) position: \((g_{-1}, p_{-1}) = (c_{\text{in}}, 0)\)

The desired pairs are found by evaluating all prefixes of

\((g_0, p_0) \ast (g_1, p_1) \ast \ldots \ast (g_{k-2}, p_{k-2}) \ast (g_{k-1}, p_{k-1})\)

The carry operator \(\ast\) is associative, but not commutative

\[[(g_1, p_1) \ast (g_2, p_2)] \ast (g_3, p_3) = (g_1, p_1) \ast [(g_2, p_2) \ast (g_3, p_3)]\]

Prefix sums analogy:

Given \(x_0\) \(x_1\) \(x_2\) \(\ldots\) \(x_{k-1}\)

Find \(x_0\) \(x_0 + x_1\) \(x_0 + x_1 + x_2\) \(\ldots\) \(x_0 + x_1 + \ldots + x_{k-1}\)
Example Prefix-Based Carry Network

(a) A 4-input prefix sums network

(b) A 4-bit Carry lookahead network

Fig. 6.6 Four-input parallel prefix sums network and its corresponding carry network.
6.5 Alternative Parallel Prefix Networks

Delay recurrence
\[D(k) = D(k/2) + 1 = \log_2 k \]

Cost recurrence
\[C(k) = 2C(k/2) + k/2 = (k/2) \log_2 k \]

Fig. 6.7 Ladner-Fischer parallel prefix sums network built of two \(k/2 \)-input networks and \(k/2 \) adders.
The Brent-Kung Recursive Construction

Delay recurrence

\[D(k) = D(k/2) + 2 = 2 \log_2 k - 1 \quad (\text{–2 really}) \]

Cost recurrence

\[C(k) = C(k/2) + k - 1 = 2k - 2 - \log_2 k \]

Fig. 6.8 Parallel prefix sums network built of one \(k/2 \)-input network and \(k - 1 \) adders.
Brent-Kung Carry Network (8-Bit Adder)
Brent-Kung Carry Network (16-Bit Adder)

Fig. 6.9
Brent-Kung parallel prefix graph for 16 inputs.

Reason for latency being $2 \log_2 k - 2$
Kogge-Stone Carry Network (16-Bit Adder)

Cost formula

\[C(k) = (k - 1) + (k - 2) + (k - 4) + \ldots + (k - k/2) = k \log_2 k - k + 1 \]

\(\log_2 k \) levels (minimum possible)

Fig. 6.10
Kogge-Stone parallel prefix graph for 16 inputs.
Speed-Cost Tradeoffs in Carry Networks

<table>
<thead>
<tr>
<th>Method</th>
<th>Delay</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladner-Fischer</td>
<td>$\log_2 k$</td>
<td>$(k/2) \log_2 k$</td>
</tr>
<tr>
<td>Kogge-Stone</td>
<td>$\log_2 k$</td>
<td>$k \log_2 k - k + 1$</td>
</tr>
<tr>
<td>Brent-Kung</td>
<td>$2 \log_2 k - 2$</td>
<td>$2k - 2 - \log_2 k$</td>
</tr>
</tbody>
</table>

Improving the Ladner/Fischer design

These outputs can be produced one time unit later without increasing the overall latency.

This strategy saves enough to make the overall cost linear (best possible).
Hybrid B-K/K-S Carry Network (16-Bit Adder)

Brent-Kung:
6 levels
26 cells

Kogge-Stone:
4 levels
49 cells

Hybrid:
5 levels
32 cells

Fig. 6.11
A Hybrid
Brent-Kung/
Kogge-Stone
parallel prefix
graph for
16 inputs.
6.6 VLSI Implementation Aspects

Example: Radix-256 addition of 56-bit numbers as implemented in the AMD Am29050 CMOS micro

Our description is based on the 64-bit version of the adder

In radix-256, 64-bit addition, only these carries are needed:

\[c_{56} \quad c_{48} \quad c_{40} \quad c_{32} \quad c_{24} \quad c_{16} \quad c_{8} \]

First, 4-bit Manchester carry chains (MCCs) of Fig. 6.12a are used to derive \(g \) and \(p \) signals for 4-bit blocks

Next, the \(g \) and \(p \) signals for 4-bit blocks are combined to form the desired carries, using the MCCs in Fig. 6.12b
Four-Bit Manchester Carry Chains

Fig. 6.12 Example 4-bit Manchester carry chain designs in CMOS technology [Lync92].
Carry Network for 64-Bit Adder

Fig. 6.13 Spanning-tree carry-lookahead network [Lync92]. Type-a and Type-b MCCs refer to the circuits of Figs. 6.12a and 6.12b, respectively.
Chapter Goals

Study alternatives to the carry-lookahead method for designing fast adders

Chapter Highlights

Many methods besides CLA are available (both competing and complementary)
Best design is technology-dependent (often hybrid rather than pure)
Knowledge of timing allows optimizations
Variations in Fast Adders: Topics

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Simple Carry-Skip Adders</td>
</tr>
<tr>
<td>7.2 Multilevel Carry-Skip Adders</td>
</tr>
<tr>
<td>7.3 Carry-Select Adders</td>
</tr>
<tr>
<td>7.4 Conditional-Sum Adder</td>
</tr>
<tr>
<td>7.5 Hybrid Designs and Optimizations</td>
</tr>
<tr>
<td>7.6 Modular Two-Operand Adders</td>
</tr>
</tbody>
</table>
7.1 Simple Carry-Skip Adders

(a) Ripple-carry adder

(b) Simple carry-skip adder

Fig. 7.1 Converting a 16-bit ripple-carry adder into a simple carry-skip adder with 4-bit skip blocks.
Another View of Carry-Skip Addition

Street/freeway analogy for carry-skip adder.
The carry-skip adder with “OR combining” works fine if we begin with a clean slate, where all signals are 0s at the outset; otherwise, it will run into problems, which do not exist in mux-based version.

Fig. 10.7 of arch book
Carry-Skip Adder with Fixed Block Size

Block width b; k/b blocks to form a k-bit adder (assume b divides k)

$$T_{\text{fixed-skip-add}} = (b - 1) + (k/b - 1) + (b - 1)$$

- in block 0 skips in last block

$$\cong 2b + k/b - 3 \text{ stages}$$

$$dT/db = 2 - k/b^2 = 0 \quad \Rightarrow \quad b^{\text{opt}} = \sqrt{k/2}$$

$$T^{\text{opt}} = 2\sqrt{2k} - 3$$

Example: $k = 32$, $b^{\text{opt}} = 4$, $T^{\text{opt}} = 13$ stages
(contrast with 32 stages for a ripple-carry adder)
Carry-Skip Adder with Variable-Width Blocks

The total number of bits in the t blocks is k:

$$2[b + (b + 1) + \ldots + (b + t/2 - 1)] = t(b + t/4 - 1/2) = k$$

$$b = k/t - t/4 + 1/2$$

$$T_{\text{var-skip-add}} = 2(b - 1) + t - 1 = 2k/t + t/2 - 2$$

$$dT/db = -2k/t^2 + 1/2 = 0 \quad \Rightarrow \quad t^{\text{opt}} = 2\sqrt{k}$$

$$T^{\text{opt}} = 2\sqrt{k} - 2 \quad \text{(a factor of } \sqrt{2} \text{ smaller than for fixed-block)}$$
7.2 Multilevel Carry-Skip Adders

Fig. 7.3 Schematic diagram of a one-level carry-skip adder.

Fig. 7.4 Example of a two-level carry-skip adder.

Fig. 7.5 Two-level carry-skip adder optimized by removing the short-block skip circuits.
Designing a Single-Level Carry-Skip Adder

Example 7.1

Each of the following takes one unit of time: generation of g_i and p_i, generation of level-i skip signal from level-$(i-1)$ skip signals, ripple, skip, and formation of sum bit once the incoming carry is known.

Build the widest possible one-level carry-skip adder with total delay of 8

Fig. 7.6 Timing constraints of a single-level carry-skip adder with a delay of 8 units.

Max adder width = 18

(1 + 2 + 3 + 4 + 4 + 3 + 1)

Generalization of Example 7.1 for total time T (even or odd)

1 2 3 ... $T/2$ $T/2$... 4 3 1

1 2 3 ... $(T + 1)/2$... 4 3 1

Thus, for any T, the total width is $\lceil (T + 1)^2/4 \rceil - 2$
Designing a Two-Level Carry-Skip Adder

Example 7.2

Each of the following takes one unit of time: generation of g_i and p_i, generation of level-i skip signal from level-$(i-1)$ skip signals, ripple, skip, and formation of sum bit once the incoming carry is known.

Build the widest possible two-level carry-skip adder with total delay of 8

Max adder width = 30

$(1 + 3 + 6 + 8 + 8 + 4)$

Fig. 7.7 Two-level carry-skip adder with a delay of 8 units.

(a) Initial timing constraints

(b) Final design
Elaboration on Two-Level Carry-Skip Adder

Example 7.2

Given the delay pair \(\{\beta, \alpha\} \) for a level-2 block in Fig. 7.7a, the number of level-1 blocks that can be accommodated is \(\gamma = \min(\beta - 1, \alpha) \)

Single-level carry-skip adder with \(T_{\text{assimilate}} = \alpha \)

Single-level carry-skip adder with \(T_{\text{produce}} = \beta \)

Width of the \(i \)th level-1 block in the level-2 block characterized by \(\{\beta, \alpha\} \) is \(b_i = \min(\beta - \gamma + i + 1, \alpha - i) \); the total block width is then \(\sum_{i=0}^{\gamma-1} b_i \)
Carry-Skip Adder Optimization Scheme

Fig. 7.8 Generalized delay model for carry-skip adders.
7.3 Carry-Select Adders

\[C_{\text{select-add}}(k) = 3C_{\text{add}}(k/2) + k/2 + 1 \]

\[T_{\text{select-add}}(k) = T_{\text{add}}(k/2) + 1 \]

Fig. 7.9 Carry-select adder for \(k \)-bit numbers built from three \(k/2 \)-bit adders.
Multilevel Carry-Select Adders

Fig. 7.10 Two-level carry-select adder built of $k/4$-bit adders.
7.4 Conditional-Sum Adder

Multilevel carry-select idea carried out to the extreme (to 1-bit blocks.

\[C(k) \approx 2C(k/2) + k + 2 \approx k (\log_2 k + 2) + k C(1) \]

\[T(k) = T(k/2) + 1 = \log_2 k + T(1) \]

where \(C(1) \) and \(T(1) \) are the cost and delay of the circuit of Fig. 7.11 for deriving the sum and carry bits with a carry-in of 0 and 1.

\[k + 2 \] is an upper bound on number of single-bit 2-to-1 multiplexers needed for combining two \(k/2 \)-bit adders into a \(k \)-bit adder.

Fig. 7.11 Top-level block for one bit position of a conditional-sum adder.
Conditional-Sum Addition Example

Table 7.2
Conditional-sum addition of two 16-bit numbers. The width of the block for which the sum and carry bits are known doubles with each additional level, leading to an addition time that grows as the logarithm of the word width k.

<table>
<thead>
<tr>
<th>Block width</th>
<th>Block carry-in</th>
<th></th>
<th>Block sum and block carry-out</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>s</td>
<td>0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0</td>
<td>0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>c</td>
<td>1 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1</td>
<td>0 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>s</td>
<td>0 1 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1</td>
<td>1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>c</td>
<td>1 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1</td>
<td>0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>s</td>
<td>0 1 1 0 0 0 0 1 0 0 1 0 0 1 1 1 1</td>
<td>1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>c</td>
<td>0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0</td>
<td>0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>s</td>
<td>0 1 1 1 0 0 0 1 0 0 1 1 1 1 1 1 1</td>
<td>1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>c</td>
<td>0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1</td>
<td>0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>s</td>
<td>0 1 1 1 0 0 1 0 0 1 0 0 0 1 1 1 1</td>
<td>1 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>s</td>
<td>c</td>
<td>0 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1</td>
<td>0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

$\text{Block width} \quad \text{Block carry-in} \quad \text{Block sum and block carry-out}$
Elaboration on Conditional-Sum Addition

Two adjacent 4-bit blocks, forming an 8-bit block

Left 4-bit block

<table>
<thead>
<tr>
<th>8j+7 . . . 8j+4</th>
<th>0 1 0 0</th>
<th>0</th>
</tr>
</thead>
</table>

Right 4-bit block

<table>
<thead>
<tr>
<th>8j+3 . . . 8j</th>
<th>1 1 1 1</th>
<th>0</th>
</tr>
</thead>
</table>

Two versions of sum bits and carry-out in 4-bit blocks

Two versions of sum bits and carry-out in 8-bit block
7.5 Hybrid Designs and Optimizations

The most popular hybrid addition scheme:

Fig. 7.12 A hybrid carry-lookahead/carry-select adder.
Details of a 64-Bit Hybrid CLA/Select Adder

Legend: $[i, j]$ represents the pair of signals $p_{[i, j]}$ and $g_{[i, j]}$

Each of the carries c_{8j}, produced by the tree network above is used to select one of the two versions of the sum in positions $8j$ to $8j + 7$
Any Two Addition Schemes Can Be Combined

Other possibilities: hybrid carry-select/ripple-carry
hybrid ripple-carry/carry-select

Fig. 7.13 Example 48-bit adder with hybrid ripple-carry/carry-lookahead design.
Optimizations in Fast Adders

What looks best at the block diagram or gate level may not be best when a circuit-level design is generated (effects of wire length, signal loading, . . .).

Modern practice: Optimization at the transistor level

Variable-block carry-lookahead adder

Optimizations for average or peak power consumption

Timing-based optimizations (next slide)
Optimizations Based on Signal Timing

So far, we have assumed that all input bits are presented at the same time and all output bits are also needed simultaneously.

Latency from inputs in XOR-gate delays

Fig. 7.14 Example arrival times for operand bits in the final fast adder of a tree multiplier [Oklo96].
Modern Low-Power Adders Implemented in CMOS

64-Bit Adder Designs

Zeydel, Kluter, Oklobdzija, ARITH-17, 2005
Taxonomy of Parallel Prefix Networks

Fanout = $2^f + 1$

Logic levels = $\log_2 k + l$

Wire tracks = 2^t

From: Harris, David, 2003
http://www.stanford.edu/class/ee371/handouts/harris03.pdf
7.6 Modular Two-Operand Adders

mod-2^k: Ignore carry out of position $k - 1$

mod-$(2^k - 1)$: Use end-around carry because $2^k = (2^k - 1) + 1$

mod-$(2^k + 1)$: Residue representation needs $k + 1$ bits

<table>
<thead>
<tr>
<th>Number</th>
<th>Std. binary</th>
<th>Diminished-1</th>
<th>$x + y \geq 2^k + 1$ iff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 ... 0 0 0</td>
<td>1 x ... x x x</td>
<td>$(x-1) + (y-1) + 1 \geq 2^k$</td>
</tr>
<tr>
<td>1</td>
<td>0 0 ... 0 0 1</td>
<td>0 0 ... 0 0 0</td>
<td>$(x + y) - 1 = (x - 1) + (y - 1) + 1$</td>
</tr>
<tr>
<td>2</td>
<td>0 0 ... 0 1 0</td>
<td>0 0 ... 0 0 1</td>
<td></td>
</tr>
<tr>
<td>$2^k - 1$</td>
<td>0 1 ... 1 1 1</td>
<td>0 1 ... 1 1 0</td>
<td>$xy - 1 = (x-1)(y-1)+(x-1)+(y-1)$</td>
</tr>
<tr>
<td>2^k</td>
<td>1 0 ... 0 0 0</td>
<td>0 1 ... 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>
General Modular Adders

\[(x + y) \mod m\]

if \(x + y \geq m\)
then \(x + y - m\)
else \(x + y\)

Fig. 7.15 Fast modular addition.
Chapter Goals

Learn methods for speeding up the addition of several numbers (needed for multiplication or inner-product)

Chapter Highlights

Running total kept in redundant form
Current total + Next number → New total
Deferred carry assimilation
Wallace/Dadda trees, parallel counters
Modular multioperand addition
Multioperand Addition: Topics

<table>
<thead>
<tr>
<th>Topics in This Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Using Two-Operand Adders</td>
</tr>
<tr>
<td>8.2 Carry-Save Adders</td>
</tr>
<tr>
<td>8.3 Wallace and Dadda Trees</td>
</tr>
<tr>
<td>8.4 Parallel Counters and Compressors</td>
</tr>
<tr>
<td>8.5 Adding Multiple Signed Numbers</td>
</tr>
<tr>
<td>8.6 Modular Multioperand Adders</td>
</tr>
</tbody>
</table>
8.1 Using Two-Operand Adders

Some applications of multioperand addition

Fig. 8.1 Multioperand addition problems for multiplication or inner-product computation in dot notation.
Serial Implementation with One Adder

Fig. 8.2 Serial implementation of multioperand addition with a single 2-operand adder.

\[T_{\text{serial-multi-add}} = O(n \log(k + \log n)) = O(n \log k + n \log \log n) \]

Therefore, addition time grows superlinearly with \(n \) when \(k \) is fixed and logarithmically with \(k \) for a given \(n \)
Pipelined Implementation for Higher Throughput

Problem to think about: Ignoring start-up and other overheads, this scheme achieves a speedup of 4 with 3 adders. How is this possible?

Fig. 8.3 Serial multioperand addition when each adder is a 4-stage pipeline.
Parallel Implementation as Tree of Adders

\[T_{\text{tree-fast-multi-add}} = O(\log k + \log(k + 1) + \ldots + \log(k + \left\lceil \log_2 n \right\rceil - 1)) \]
\[= O(\log n \log k + \log n \log \log n) \]

\[T_{\text{tree-ripple-multi-add}} = O(k + \log n) \quad \text{[Justified on the next slide]} \]
The absolute best latency that we can hope for is $O(\log k + \log n)$.

There are kn data bits to process and using any set of computation elements with constant fan-in, this requires $O(\log(kn))$ time.

We will see shortly that carry-save adders achieve this optimum time.
8.2 Carry-Save Adders

Fig. 8.6 A ripple-carry adder turns into a carry-save adder if the carries are saved (stored) rather than propagated.

Fig. 8.7 Carry-propagate adder (CPA) and carry-save adder (CSA) functions in dot notation.

Fig. 8.8 Specifying full- and half-adder blocks, with their inputs and outputs, in dot notation.
Multioperand Addition Using Carry-Save Adders

\[T_{\text{carry-save-multi-add}} = O(\text{tree height} + T_{\text{CPA}}) \]
\[= O(\log n + \log k) \]

\[C_{\text{carry-save-multi-add}} = (n - 2)C_{\text{CSA}} + C_{\text{CPA}} \]

Fig. 8.9 Tree of carry-save adders reducing seven numbers to two.

Fig. 8.13 Serial carry-save addition using a single CSA.
Example Reduction by a CSA Tree

Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

- 12 FAs
- 6 FAs
- 6 FAs
- 4 FAs + 1 HA

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.11 Representing a seven-operand addition in tabular form.

- A full-adder compacts 3 dots into 2 (compression ratio of 1.5)
- A half-adder rearranges 2 dots (no compression, but still useful)

<table>
<thead>
<tr>
<th>Bit position</th>
<th>8 7 6 5 4 3 2 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>6x2</td>
<td>12 FAs</td>
</tr>
<tr>
<td>6 FAs</td>
<td>6 FAs</td>
</tr>
<tr>
<td>6 FAs</td>
<td>6 FAs</td>
</tr>
<tr>
<td>4 FAs + 1 HA</td>
<td>4 FAs + 1 HA</td>
</tr>
<tr>
<td>7-bit adder</td>
<td>7-bit adder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total cost</th>
<th>7-bit adder + 28 FAs + 1 HA</th>
</tr>
</thead>
</table>
Width of Adders in a CSA Tree

Fig. 8.12 Adding seven \(k \)-bit numbers and the CSA/CPA widths required.

Due to the gradual retirement (dropping out) of some of the result bits, CSA widths do not vary much as we go down the tree levels.

The index pair \([i, j]\) means that bit positions from \(i\) up to \(j\) are involved.
8.3 Wallace and Dadda Trees

\[h(n) = 1 + h(\lceil 2n/3 \rceil) \]
\[n(h) = \lfloor 3n(h - 1)/2 \rfloor \]
\[2 \times 1.5^{h-1} < n(h) \leq 2 \times 1.5^h \]

Table 8.1 The maximum number \(n(h) \) of inputs for an \(h \)-level CSA tree

<table>
<thead>
<tr>
<th>(h)</th>
<th>(n(h))</th>
<th>(h)</th>
<th>(n(h))</th>
<th>(h)</th>
<th>(n(h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>7</td>
<td>28</td>
<td>14</td>
<td>474</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>8</td>
<td>42</td>
<td>15</td>
<td>711</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>9</td>
<td>63</td>
<td>16</td>
<td>1066</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>10</td>
<td>94</td>
<td>17</td>
<td>1599</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>11</td>
<td>141</td>
<td>18</td>
<td>2398</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>12</td>
<td>211</td>
<td>19</td>
<td>3597</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
<td>13</td>
<td>316</td>
<td>20</td>
<td>5395</td>
</tr>
</tbody>
</table>

\(n(h) \): Maximum number of inputs for \(h \) levels
Example Wallace and Dadda Reduction Trees

Wallace tree:
Reduce the number
of operands at the
earliest possible
opportunity

Dadda tree:
Postpone the
reduction to the
extent possible
without causing
added delay

Fig. 8.10 Addition of seven 6-bit numbers in dot notation.

Fig. 8.14 Adding seven 6-bit numbers using Dadda’s strategy.
A Small Optimization in Reduction Trees

Fig. 8.14 Adding seven 6-bit numbers using Dadda’s strategy.

Total cost = 7-bit adder + 28 FAs + 1 HA

Fig. 8.15 Adding seven 6-bit numbers by taking advantage of the final adder’s carry-in.

Total cost = 7-bit adder + 26 FAs + 3 HA
8.4 Parallel Counters and Compressors

1-bit full-adder = (3; 2)-counter

Circuit reducing 7 bits to their 3-bit sum = (7; 3)-counter

Circuit reducing n bits to their $\lceil \log_2(n + 1) \rceil$-bit sum = ($n$; $\lceil \log_2(n + 1) \rceil$)-counter

Fig. 8.16 A 10-input parallel counter also known as a (10; 4)-counter.
Recursive Construction of Parallel Counters

An n-input parallel counting network (PCN) can be built from two $\lfloor n/2 \rfloor$-bit parallel counting networks and a $\lfloor \log_2 n \rfloor$-bit adder.
Accumulative Parallel Counters

True generalization of sequential counters

Possible application: Compare Hamming weight of a vector to a constant

Parallel incrementer

\[q\text{-bit initial count } x \]

\[q\text{-bit tally of up to } 2^q - 1 \text{ of the increment signals} \]

\[n \text{ increment signals } v_i, \quad 2^{q-1} < n \leq 2^q \]

\[q\text{-bit final count } y = x + \sum v_i \]

\[q\text{-bit final count } y \]
Up/Down Parallel Counters

Generalization of up/down counters

Possible application: Compare Hamming weights of two input vectors
8.5 Generalized Parallel Counters

- Multicolumn reduction

- (5, 5; 4)-counter

- Unequal columns

- (2, 3; 3)-counter

Fig. 8.17 Dot notation for a (5, 5; 4)-counter and the use of such counters for reducing five numbers to two numbers.

Gen. parallel counter = Parallel compressor
Column Compression: A Simple Example

Adding eight 6-digit decimal numbers:
Add digits in each column separately and write down the 2-digit column sum under the column, with its 10s digit shifted left by one position.

Question:
What is the maximum number of decimal values that can be added in this way (that is, with column compression leading to two decimal numbers)?
A General Strategy for Column Compression

(n; 2)-counters

To $i + 1$
To $i + 2$
To $i + 3$

$n + \psi_1 + \psi_2 + \psi_3 + \ldots \leq 3 + 2\psi_1 + 4\psi_2 + 8\psi_3 + \ldots$

$n - 3 \leq \psi_1 + 3\psi_2 + 7\psi_3 + \ldots$

Example: Design a bit-slice of an (11; 2)-counter

Solution: Let’s limit transfers to two stages. Then, $8 \leq \psi_1 + 3\psi_2$
Possible choices include $\psi_1 = 5$, $\psi_2 = 1$ or $\psi_1 = \psi_2 = 2$
(4; 2)-Counters

We will discuss (4; 2)-counters in greater detail in Section 11.2 (see, e.g., Fig. 11.5 for an efficient realization)
8.5 Adding Multiple Signed Numbers

<table>
<thead>
<tr>
<th>Extended positions</th>
<th>Sign</th>
<th>Magnitude positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{k-1}</td>
<td>x_{k-1}</td>
<td>x_{k-1}</td>
</tr>
<tr>
<td>y_{k-1}</td>
<td>y_{k-1}</td>
<td>y_{k-1}</td>
</tr>
<tr>
<td>z_{k-1}</td>
<td>z_{k-1}</td>
<td>z_{k-1}</td>
</tr>
</tbody>
</table>

(a) Using sign extension

<table>
<thead>
<tr>
<th>Extended positions</th>
<th>Sign</th>
<th>Magnitude positions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>y_{k-1}'</td>
<td>y_{k-2}</td>
<td>y_{k-3}</td>
</tr>
<tr>
<td>z_{k-1}'</td>
<td>z_{k-2}</td>
<td>z_{k-3}</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$-b = (1 - b) + 1 - 2$

(b) Using negatively weighted bits

Fig. 8.19 Adding three 2's-complement numbers.
8.6 Modular Multioperand Adders

Fig. 8.20 Modular carry-save addition with special moduli.

(a) $m = 2^k$

(b) $m = 2^k - 1$

(c) $m = 2^k + 1$
Modular Reduction with Pseudoresidues

Fig. 8.21 Modulo-21 reduction of 6 numbers taking advantage of the fact that 64 = 1 mod 21 and using 6-bit pseudoresidues.