A Formulation of Fast Carry Chains Suitable for Efficient Implementation with Majority Elements

Behrooz Parhami (2nd author)
Dept. Electrical & Computer Eng.
Univ. of California, Santa Barbara

Ghassem Jaberipur
Shahid Beheshti Univ. & IPM, Iran

Dariush Abedi
Shahid Beheshti Univ., Iran
Continual Reassessment of Designs

• Change in cost/delay models with advent of ICs
 Transistors became faster/cheaper; wires costlier/slower
• Adaptation to CMOS, domino logic, and the like
 Optimal design for one technology not best with another
• Power and energy-efficiency considerations
 Voltage levels and number of transitions became important
• Quantum computing and reversible circuits
 Fan-out; managing constant inputs and garbage outputs
• Nanotech and process uncertainty / unreliability
 Designs for a wide range of circuit parameters and failures
• Novel circuit elements and design paradigms
 From designs optimized for FPGAs to biological computing
Threshold, Majority, Median

Threshold logic extensively studied since the 1940s

“Fires” if weighted sum of the inputs equals or exceeds the threshold value

\[\text{sum} = w_1 x_1 + w_2 x_2 + w_3 x_3 \]

Majority is a special case with unit weights and \(t = (n + 1)/2 \)

For 3-input majority gate: \(w_1 = w_2 = w_3 = 1; \ t = 2 \)

For 0-1 inputs, majority is the same as median

Axioms defining a median algebra

- \(M(a, b, b) = b \)
- \(M(a, b, c) = M(a, c, b) \)
- \(M(a, b, c) = M(c, a, b) \)
- \(M(M(a, x, b), x, c) = M(a, x, M(b, x, c)) \)

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 003
Emerging Majority-Based Technologies

- Quantum-dot cellular automata (QCA)
 The basic cell has four electron place-holders (“dots”)
- Single-electron tunneling (SET)
 Based on controlled transfer of individual electrons
- Tunneling phase logic (TPL)
 Capacitively-coupled inputs feed a load capacitance
- Magnetic tunnel junction (MTJ)
 Uses two ferromagnetic thin-film layers, free and fixed
- Nano-scale bar magnets (NBM)
 Scaled-down adaptation of fairly old magnetic logic
- Biological embodiments of majority function
 Basis for neural computation in human / animal brains
Quantum-dot Cellular Automata (QCA)

The basic cell has four electron place-holders ("dots")

Three QCA cell configurations

M(1,1,0) = 1 M(0,1,0) = 0

A robust QCA Inverter QCA M gates with 2 sets of inputs
Single-Electron Tunneling (SET)

Based on controlled transfer of individual electrons

SET circuits for M (left) and inversion (right) [28]
Tunneling Phase Logic (TPL)

Capacitively-coupled inputs feed a load capacitance

The basic TPL gate implements the minority function

\[\text{inv}(a) = \overline{a} = \text{minority}(a, 0, 1) \]
Magnetic Tunnel Junction (MTJ)

Uses two ferromagnetic thin-film layers, free and fixed

Majority gate in MTJ logic
Nano-scale Bar Magnets (NBM)

Voting with nanomagnets

Scaled-down adaptation of fairly old magnetic logic

Two types of nanomagnet wires
The Carry Recurrence and Operator

\[c_{i+1} = a_i b_i \lor (a_i \lor b_i)c_i \quad 0 \leq i \leq n - 1 \]

With generate \(g_i = a_i b_i \) and propagate \(p_i = a_i \lor b_i \) signals:

\[c_{i+1} = g_i \lor p_i c_i \]

With group-generate \(G_{i:j} \) and group-propagate \(P_{i:j} \) signals:

\[(G_{i:j}, P_{i:j}) = (G_{i:k} \lor P_{i:k} G_{k-1:j}, P_{i:k} P_{k-1:j}) \]

\[c_{i+1} = G_{i:j} \lor P_{i:j} c_j \]

Carry generation using a majority gate:

\[c_{i+1} = M(a_i, b_i, c_i) \]
The Full-Adder (FA) Building Block

\[s_i = a_i \oplus b_i \oplus c_i \]
\[c_{i+1} = a_i b_i + (a_i + b_i)c_i \]

FA has been widely studied and optimized
Implementation with seven 2-input gates:
Majority-Gate Implementations of FA

Blind mapping: Seven partially utilized M-gates, 2 inverters:

Three fully-utilized M gates, 2 inverters:

\[s_i = M(M(\overline{c_i}, a_i, b_i), M(a_i, b_i, c_i), c_i) \]
\[c_{i+1} = M(a_i, b_i, c_i) \]
Parallel-Prefix Kogge-Stone-Like CGN

M-based implementations of the building blocks:
Blind mapping
Total of 73 PUM gates
Exploiting Fully Utilized M-Gates: First Attempt by Pudi et al.

8-bit CGN:
CDP: 5 M
PUMs: 15
FUMs: 13
M total: 28
FUM%: 53

[61% fewer M-gates than with blind mapping]

B. Parhami ARITH-23: Fast Carry Chains with Majority Elements Slide # 014
Exploiting Fully Utilized M-Gates: Second Attempt by Perri et al.

Two-bit CGN
with 1 M CDP
in c_i-to-c_{i+2} path

Total for 8-bit adder: 24
[67% fewer M-gates than with blind mapping]

$$c_{i+2} = M(M(a_{i+1}, b_{i+1}, p_i), M(a_{i+1}, b_{i+1}, g_i), c_i)$$

Conventional (2M delay, 2 FUM):
$$c_{i+2} = M(a_{i+1}, b_{i+1}, M(a_i, b_i, c_i))$$
Our Compromise Solution
(1M carry-path delay, 3 FUM)

\[c_{i+2} = M(M(a_{i+1}, b_{i+1}, a_i), M(a_{i+1}, b_{i+1}, b_i), c_i) \]

\[A_{i+1:i} = M(a_{i+1}, b_{i+1}, a_i) \]
\[B_{i+1:i} = M(a_{i+1}, b_{i+1}, b_i) \]
\[c_{i+2} = M(A_{i+1:i}, B_{i+1:i}, c_i) \]

Think of \(A_{i+1:i} \) and \(B_{i+1:i} \), as representing 2-bit inputs \(a_{i+1}a_i \) and \(b_{i+1}b_i \)

Example:

\[a_{i+1}a_i = c_i = 1 \implies a_i = c_i = 1 \implies c_{i+1} = 1 \] and \(a_{i+1} = 1 \implies c_{i+2} = 1 \]
Generalizing the Compromise Solution

Twin M-gate:

\[(A_{j:i}, B_{j:i}): (M(a_j, b_j, A_{j-1:i}), M(a_j, b_j, B_{j-1:i}))\]

Majority group generate and propagate:

\[
\begin{align*}
\Gamma_{j:i} &= A_{j:i}B_{j:i} \\
\Pi_{j:i} &= A_{j:i} + B_{j:i} \\
\Gamma_{j:i} &= g_j + p_j \Gamma_{j-1:i} \\
\Pi_{j:i} &= g_j + p_j \Pi_{j-1:i}
\end{align*}
\]

Properties:

\[
\begin{align*}
\Gamma_{j:i} &= g_j + p_j \Gamma_{j-1:i} \\
\Pi_{j:i} &= g_j + p_j \Pi_{j-1:i} \\
c_{i+j+1} &= M(A_{i+j:i}, B_{i+j:i}, c_i)
\end{align*}
\]

Associativity:

\[
A_{k+j:i} = M(A_{k+j:j}, B_{k+j:j}, A_{j-1:i}), B_{k+j:i} = M(A_{k+j:j}, B_{k+j:j}, B_{j-1:i})
\]

B. Parhami
ARITH-23: Fast Carry Chains with Majority Elements
Slide # 017
KS-Like and LF-Like M-Based GGNs
(with C_{in})

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 018
KS-Like and LF-Like M-Based GGNs (with C_{in}) (% of FUM: 100)

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements
KS-Like and LF-Like M-Based GGNs (with C_{in}) (% of FUM: 100)
Scaling up to 16-bit KS-Like Design

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements

Slide # 021
QCA Implementation: 8-Bit LF-Like

B. Parhami

ARITH-23: Fast Carry Chains with Majority Elements
Comparison with Previous Work
(8-bit CGN)

<table>
<thead>
<tr>
<th></th>
<th>Delay (clock zone)</th>
<th>PUM*</th>
<th>FUM*</th>
<th>Total M</th>
</tr>
</thead>
<tbody>
<tr>
<td>New KS-like</td>
<td>6</td>
<td>0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>New LF-like</td>
<td>6</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>[13]</td>
<td>9</td>
<td>28</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>[15]</td>
<td>9</td>
<td>15</td>
<td>13</td>
<td>28</td>
</tr>
</tbody>
</table>

* Partially / Fully-Utilized M-Gates
Conclusions and Future Work

• Best M-based carry-network designs to date
 – More efficient use of (fully utilized) M-gates
 – Applicable to a variety of PPN design styles
 – Benefits over naïve designs and prior attempts

• Majority-friendly tech’s becoming important
 – Improve, assess, and fine-tune implementations
 – Extend designs to several other word widths
 – Obtain generalized cost/latency formulas
 – Pursue design methods for other technologies