Tight Bounds on the Ratio of Network Diameter to Average Internode Distance

Behrooz Parhami
University of California, Santa Barbara
About This Presentation

This slide show was first developed in fall of 2018 for a November 2018 talk at IEEE IEMCON (Information Technology, Electronics & Mobile Communication Conf.), University of British Columbia, Vancouver, BC, Canada. All rights reserved for the author. ©2018 Behrooz Parhami

<table>
<thead>
<tr>
<th>Edition</th>
<th>Released</th>
<th>Revised</th>
<th>Revised</th>
<th>Revised</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>Fall 2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Network Attributes

- Diameter: \(D \)
- Average distance: \(D \)
- Node degree: \(d \) (max, min)
- Bisection bandwidth: \(B \)
- Longest wire
- Heterogeneous or homogeneous nodes

Other attributes:
- Regularity
- Scalability
- Packageability
- Robustness

Number of nodes: \(p \)
Distances in Path and Mesh Networks

$D_{p\text{-path}} = p - 1$

$\Delta_{p\text{-path}} = (1/p^2)\sum_{0 \leq j \leq p-1} [\sum_{0 \leq i \leq j} (j - i) + \sum_{j \leq i \leq p-1} (i - j)]$

$\Delta_{p\text{-path}} = (1/p^2)\sum_{0 \leq j \leq p-1} [j(j + 1) - j(j + 1)/2$

$+ (p - j)(p - 1 + j)/2 - j(p - j)] = (1/3)(p - 1/p)$

$D_{q\text{D-mesh}} = \sum_{1 \leq i \leq q} n_i - q$

$\Delta_{q\text{D-mesh}} = (1/3)[\sum_{1 \leq i \leq q} (n_i - 1/n_i)]$

$D_{p\text{-path}} / \Delta_{p\text{-path}} \approx 3$

$D_{q\text{D-mesh}} / \Delta_{q\text{D-mesh}} \approx 3$
Distances in Ring and Torus Networks

\[
D_{p\text{-ring}} = \left(\frac{1}{2}\right)\left[p - \left(p \mod 2\right)/p\right]
\]
\[
\Delta_{p\text{-ring}} = \left(\frac{1}{4}\right)\left[p - \left(p \mod 2\right)/p\right]
\]
\[
D_{q\text{D-torus}} = \left(\frac{1}{2}\right)\sum_{1 \leq i \leq q} \left[n_i - \left(n_i \mod 2\right)/n_i\right]
\]
\[
\Delta_{q\text{D-torus}} = \left(\frac{1}{4}\right)\sum_{1 \leq i \leq q} \left[n_i - \left(n_i \mod 2\right)/n_i\right]
\]

Alternative formula: \(D_{p\text{-ring}} = \left\lceil \left(\frac{p - 1}{2}\right) \right\rceil \)

\[
\frac{D_{p\text{-ring}}}{\Delta_{p\text{-ring}}} = 2
\]
\[
\frac{D_{q\text{D-torus}}}{\Delta_{q\text{D-torus}}} = 2
\]
Distances in Complete Binary Trees (1)

\[D_{\text{binary-tree}} = 2l - 2 = 2 \log_2 m - 2 \]

[Let \(m = 2^l \); \(T_m \) has \(2^l - 1 \) nodes]

\[\sigma(T_m) = 1 \times 2^1 + 2 \times 2^2 + \ldots + (l - 1) \times 2^{l-1} = (l - 2)2^l + 2 \]

\[= m \log_2 m - 2m + 2 \]

\(S(L, L) = S(R, R) = S(T_{m/2}) \)

\(S(r, L) = S(r, R) = S(L, r) = S(R, r) \)

\[= m/2 - 1 + \sigma(m/2) \]

\(S(L, R) = S(R, L) \)

\[= (m/2 - 1)^2 \left[2 + 2\sigma(m/2)/(m/2 - 1) \right] \]

\[= (m - 2)\sigma(m/2) + (m - 2)^2/2 \]
Distances in Complete Binary Trees (2)

\[S(T_m) = 2S(L, L) + 4S(r, L) + 2S(L, R) \]
\[= 2S(T_{m/2}) + m^2 \log_2 m - 2m^2 + 2m \]
\[= 2m^2 \log_2 m - 6m^2 + 2m \log_2 m + 6m \]

\[\Delta(T_m) = \frac{(2m^2 \log_2 m - 6m^2 + 2m \log_2 m + 6m)/(m-1)^2}{\text{Asymptotic value}} \]

Recall \[D(T_m) = 2l - 2 = 2 \log_2 m - 2 \]

\[\lim_{m \to \infty} \Delta(T_m) = D(T_m) - 4 \]
\[\lim_{m \to \infty} \frac{D(T_m)}{\Delta(T_m)} = 1 \]
Incomplete and Balanced Binary Trees

Complete binary tree: All \(2^{l-1} = (p + 1)/2\) leaves are at level \(l\)

Incomplete binary tree: There are leaves in 2 or more levels

Balanced binary tree: Leaves are at levels \(l\) and \(l-1\)

Complete binary tree: All leaves are at level \(l\)

\[
p = 2^l - 1 \quad p < 2^l - 1 \quad 2^{l-1} - 1 < p < 2^l - 1
\]
Distances in Balanced Binary Trees

Theorem 1: In an incomplete binary tree with more than one incomplete level, removing a node from an incomplete level k and adding a node to an incomplete level $k - j$ ($j > 0$) does not increase the diameter and always reduces the average internode distance. ■

Theorem 2: In a balanced binary tree, with the final level l containing missing nodes in both subtrees, removing a node from a side with equal or fewer nodes and adding a node to the other side decreases the average internode distance, with no increase in diameter. ■
Extremes in Distance Ratio Bounds

\[D(G) = m \]
\[\Delta(G) = \left[n^2 + m(m^2-1)/3 + 2(n-1)(2+3+\ldots+m) \right]/(n+m-1)^2 \]

\[\lim_{n \to \infty} \Delta(G) = 1 \]

\[\lim_{n \to \infty} D(T_m) / \Delta(T_m) = m \]

So, we can make the \(D/\Delta \) ratio as close as we want to the arbitrary value \(m \)

The extreme graph \(G \)
Ratio Bounds in Symmetric Networks

Theorem 3: Given a node-symmetric network with node degree d, diameter D, and average internode distance Δ, we have $D/2 \leq \Delta \leq D$. ■

Proof outline: Consider a node X and a diametrically opposite node to it, Y. Let there be d nodes that are distance-1 to X (its immediate neighbors). By node-symmetry, Y also has d distance-1 nodes. The latter nodes are at least distance $D – 1$ to X. So, the average distance from X to the two set of nodes (neighbors of X and Y) is at least $D/2$. This process can be repeated for distance-2, distance-3, … nodes, until done. ■
Some Practical Implications

D and Δ are important network parameters.

Can’t judge a network merely on the basis of its aggregate bandwidth Bw.

Consider a 100-link network, with $Bw = 100b$.

Probability of being able to establish an ith random routing path of length Δ in the network is

$$p_i = \frac{(C-(i-1)\Delta)}{\Delta} / \frac{C}{\Delta}$$
Conclusions and Future Work

Calculating average distance avoidable in many cases

Ratio of diameter to average internode distance is:
- Unbounded in worst-case (impractical extremes)
- Between 1 and 2 in symmetric networks
- Fairly small in other practical cases
- Very close to 1 for trees

Future work and practical impact

- Tighten the bounds for special classes of networks
- Study pertinent bounds for Cayley graphs
- Simulate in detail effects of D and Δ
- Derive exact Δ for more networks
- Routing-based D and Δ
Questions or Comments?

parhami@ece.ucsb.edu
http://www.ece.ucsb.edu/~parhami/
Tight Bounds on the Ratio of Network Diameter to Average Internode Distance

Behrooz Parhami
University of California, Santa Barbara

Back-Up Slides
Effect of Δ in Establishing Routing Paths

Probability of being able to establish an ith random routing path of length Δ in a 100-link network

<table>
<thead>
<tr>
<th>$\Delta\downarrow$</th>
<th>$i\rightarrow$</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0.990</td>
<td>0.980</td>
<td>0.960</td>
<td>0.940</td>
<td>0.910</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.960</td>
<td>0.921</td>
<td>0.846</td>
<td>0.773</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.912</td>
<td>0.829</td>
<td>0.679</td>
<td>0.548</td>
<td>0.385</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.847</td>
<td>0.713</td>
<td>0.492</td>
<td>0.327</td>
<td>0.162</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.770</td>
<td>0.584</td>
<td>0.319</td>
<td>0.161</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.683</td>
<td>0.455</td>
<td>0.183</td>
<td>0.063</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.592</td>
<td>0.336</td>
<td>0.092</td>
<td>0.019</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.500</td>
<td>0.234</td>
<td>0.040</td>
<td>0.004</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.395</td>
<td>0.154</td>
<td>0.014</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.310</td>
<td>0.095</td>
<td>0.004</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Routing with Wormhole Switching

Average internode distance Δ is an indicator of performance
Δ is closely related to the diameter D

For symmetric nets: $D/2 \leq \Delta \leq D$

Short worms: hop distance clearly dictates the message latency

Long worms: latency is insensitive to hop distance, but tied up links and waste due to dropped or deadlocked messages rise with hop distance