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Arithmetic is a branch of mathematics that deals with numbers and numerical 

computation. Arithmetic operations on pairs of numbers x and y include addition, 

producing the sum s = x + y, subtraction, yielding the difference d = x – y, multiplication, 

resulting in the product p = x × y, and division, generating the quotient q = x / y (and, in 

the case of integer division, the remainder z = x mod y). Subtraction and division can be 

viewed as operations that undo the effects of addition and multiplication, respectively. 

Computer arithmetic is a branch of computer engineering that deals with methods of 

representing integers and real values (e.g., fixed- and floating-point numbers) in digital 

systems and efficient algorithms for manipulating such numbers by means of hardware 

circuits or software routines. On the hardware side, various types of adders, subtractors, 

multipliers, dividers, square-rooters, and circuit techniques for function evaluation are 

considered. Both abstract structures and technology-specific designs are dealt with. 

Software aspects of computer arithmetic include complexity, error characteristics, 

stability, and certifiability of computational algorithms. 

 

I Natural Numbers 

When we think of numbers, it is usually the natural numbers that first come to our mind; 

the type of numbers that sequence book or calendar pages, mark clock dials, flash on 

stadium scoreboards, and guide deliveries to our houses. The set {0, 1, 2, 3, . . .} of 

natural numbers, also known as whole numbers or unsigned integers, forms the basis of 

arithmetic. We use natural numbers for counting and for answering questions that ask 

“how many?”. 
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Four-thousand years ago, Babylonians knew about natural numbers and were proficient 

in arithmetic. Since then, representations of natural numbers have advanced in parallel 

with the evolution of language. Ancient civilizations used sticks and pebbles to record 

inventories or accounts. When the need for larger numbers arose, the idea of grouping 

sticks or pebbles simplified counting and comparisons; for example, 27 was represented 

by five groups of five sticks, plus two sticks. Eventually, objects of different shapes or 

colors were used to denote such groups, leading to more compact representations.  

 

Numbers must be differentiated from their representations, sometimes called numerals. 

For example, the number “twenty-seven” can be represented in different ways using 

various numerals or numeration systems; these include:  

 

||||| ||||| ||||| ||||| ||||| ||   sticks or unary code 

27 radix-10 or decimal code 

11011    radix-2 or binary code 

XXVII     Roman numerals  

 

However, we don’t always make the distinction between numbers and numerals and may 

use “decimal numbers” in lieu of “decimal numerals.” 

 

Roman numerals were used in Europe during the Middle Ages. Even when Europeans 

learned that the Arabs had a better way of representing numbers, it took them centuries to 
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adopt the Arabic system based on numerals, or digits, 0-9 and a radix of 10. In these 

decimal numbers, the worth of each position is 10 times that of the adjacent position to its 

right, so that the string of digits “5327” represents five thousands, plus three hundreds, 

plus two tens, plus seven ones. 

 

Other radices have also appeared over the ages (see A. Glaser’s History of Binary and 

Other Nondecimal Numeration, Tomash Publishers, 1981). Babylonians used radix-60 

numbers, which make dealing with time easy. The radices 12 (duodecimal) and 5 

(quinary) have also been used. The use of radix-2 ( binary) numbers became popular with 

the onset of electronic computers, because their use of binary digits, or bits, having only 

two possible values 0 and 1, is compatible with electronic signals. Radix-8 (octal) and 

radix-16 (hexadecimal) numbers have been used as shorthand notation for binary 

numbers. For example, a 24-bit binary number can be represented as an 8-digit octal or a 

6-digit hexadecimal number by taking the bits in groups of threes and fours, respectively. 

 

In a general radix-r positional number system, with a fixed word width of k, a number x is 

represented by a string of k digits xi, with 0 ≤ xi ≤ r – 1: 

 

 x = ∑i=0 to k–1 xi r
i = (xk–1xk–2 . . . x1x0) r    (1) 

 

For example: 

 

 27 = (1 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) = (11011)two  
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In a k-digit radix-r number system, natural numbers from 0 to rk – 1 can be represented. 

Conversely, given a desired representation range [0, M – 1], the required number k of 

digits in radix r is obtained from the following equation: 

 

 k = ⎡logr M⎤ = ⎣logr(M – 1)⎦ + 1      (2) 

 

For example, representing the decimal number 3125 requires 12 bits in radix 2, five digits 

in radix 5, and four digits in radix 8. 

 

Given a number x represented in radix r, one can obtain its radix-R representation in two 

ways. If we wish to perform arithmetic in the new radix R, we simply evaluate a 

polynomial in r whose coefficients are the digits xi. This corresponds to Equation (1) and 

can be performed more efficiently by using Horner’s rule which involves repeated steps 

of multiplying by r followed by addition: 

 

 (xk–1xk–2 . . . x1x0) r = ((…(xk–1r + xk–2)r + . . . x1)r + x0)   (3) 

  

This method is particularly suitable for manual conversion from an arbitrary radix r to 

radix 10, given the relative ease with which we can perform radix-10 arithmetic. 

 

To perform the radix conversion using arithmetic in the old radix r, we repeatedly divide 

the number x by the new radix R, keeping track of the remainder in each step. These 
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remainders correspond to the radix-R digits Xi, beginning from X0. For example, we 

convert the decimal number 23 to radix 2 as follows: 

 

 23 divided by 2 yields 11 with remainder 1 

 11 divided by 2 yields 5 with remainder 1 

 5 divided by 2 yields 2 with remainder 1 

 2 divided by 2 yields 1 with remainder 0 

 1 divided by 2 yields 0 with remainder 1 

 

Reading the computed remainders from bottom to top, we find 23 = (10111)two. Using the 

same process, we can convert 23 to radix 5 to get 23 = (43)five. 

 

II Digit Sets and Encodings 

The standard digit set used for radix-r numbers is {0, 1, . . . , r – 1}. This digit set leads to 

a unique representation for every natural number. The binary or rdix-2 digit set is {0, 1} 

which is conveniently representable by electronic signals. Typically, low voltage is used 

to represent 0 and high voltage denotes 1, but the reverse polarity can also be used. 

Conceptually, the decimal digit values 0 through 9 could be represented by 10 different 

voltage levels. However, encoding everything with 0s and 1s makes it easier for 

electronic circuits to interpret and process the information speedily and reliably. 

 

One way to encode decimal digits using binary signals is to encode each of the digits 0-9 

by means of its 4-bit binary representation. The resulting binary-coded decimal (BCD) 

representation is shown below: 
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 Digit BCD representation 

0 0 0 0 0   
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

 

The use of digit values 0 through r – 1 in radix r is just a convention. We could use more 

than r digit values (for example, digit values –2 to 2 in radix 4) or use r digit values that 

do not start with 0 (for example, digit set {–1, 0, 1} in radix 3). In the first instance, the 

resulting number system possesses redundancy in that some numbers will have multiple 

representations. More on this in Section XVI. 

 

Of course, any finite set of symbols, not just digits, can be encoded using binary signals. 

The American Standard Code for Information Interchange (ASCII) is one such 

convention that represents upper- and lower-case letters, numerals, punctuation marks, 

and other symbols in an 8-bit byte. For example, the 8-bit ASCII codes for the ten 

decimal digits are of the form 0011xxxx, where the “xxxx” part is identical to the BCD 

code discussed earlier. ASCII digits take twice as much space as BCD digits and thus are 

not used in arithmetic units. Even less compact than ASCII is the 16-bit Unicode which 

can accommodate symbols from many different languages. 
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III Integers  

The set { . . . , –3, –2, –1, 0, 1, 2, 3, . . . } of integers is also referred to as signed or 

directed (whole) numbers. The most straightforward representation of integers consists of 

attaching a sign bit to any desired representation of natural numbers, leading to signed-

magnitude representation. The standard convention is to use 0 for positive and 1 for 

negative and attach the sign bit to the left end of the magnitude. Here are two examples: 

 

 +27 in 8-bit signed-magnitude binary code  00011011 

 –27 in 2-digit decimal code with BCD digits  1  0010  0111 

 

Another option for encoding signed integers in the range [–N, P] is the biased 

representation. If we add the positive value N (the bias) to all numbers in the desired 

range, unsigned integers in the range [0, P + N] result. Any method for representing 

natural numbers in [0, P + N] can then be used for representing the original signed 

integers in [–N, P]. This type of biased representation has only limited application in 

encoding of the exponents in floating-point numbers (see Section XI). 

 

By far the most common machine encoding of signed integers is the 2’s-complement 

representation. In the k-bit 2’s-complement format, a negative value –x, with x > 0, is 

encoded as the unsigned number 2k – x. Figure 1 shows encodings of positive and 

negative integers in the 4-bit 2’s-complement format. Note that the positive integers 0 

through 7 (or 2k–1 – 1, in general) have the standard binary encoding, whereas negative 

values –1 through –8 (or –2k–1, in general) have been transformed to unsigned values by 

adding 16 (or 2k, in general) to them. 
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0000 
0001 1111 

0010 1110 

0011 1101 

0100 1100 

1000 

0101 1011 

0110 1010 

0111 1001 

+0 
+1 

+2 

+3 

+4 

+5 

+6 
+7 

-1 

-5 

-2 

-3 

-4 

-8 
-7 

-6 

+ _  

 

Fig. 1. Schematic representation of 4-bit 2’s-complement code for integers in [–8, +7]. 

 

Two important properties of 2’s-complement numbers are worth noting. First, the 

leftmost bit of the representation acts a the sign bit (0 for positive values, 1 for negative 

ones). Second, the value represented by a particular bit pattern can be derived without a 

need to follow different procedures for negative and positive values. We simply use 

Equation (1), as we did for unsigned integers, except that the sign bit is considered to 

have a negative weight. Here are two examples: 

 

 (01011)2’s-compl = (–0 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) =  +11  

 (11011)2’s-compl = (–1 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 × 20) =  –5  

 

The reason for the popularity of 2’s-complement representation will become clear when 

we discuss addition and subtraction in Section VI. 
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Other complement representation systems can also be devised, but none is in widespread 

use. Choosing any complementation constant M, that is at least as large as N + P + 1, 

allows us to represent signed integers in the range [–N, P], with the positive numbers in 

[0, +P] corresponding to the unsigned values in [0, P] and negative numbers in [–N, –1] 

represented as unsigned values in [M – N, M – 1]. Sometimes, M itself is used as an 

alternate code for 0 (actually, –0). For example, the k-bit 1’s-complement system is based 

on M = 2k – 1 and includes numbers in the range [–(2k/2 – 1), 2k/2 – 1], with 0 having two 

representations: the all-0s string and the all-1s string. 

 

IV Counting  

The natural numbers are ordered. Each natural number x has a successor succ(x), which is 

the next number in this order and, except when x = 0, it has a predecessor pred(x). 

Counting is the act of going through the successor or predecessor sequence, beginning 

with some initial value. So, (3, 4, 5, 6, . . . ) is an up-counting sequence and (15, 14, 13, 

12, . . . ) is a down-counting sequence (for a detailed treatment of various types of 

counters, see R.M.M. Oberman’s Counting and Counters, Macmillan, 1981). Hardware 

circuits that mimic this process, advancing to the successor number or retrogressing to the 

predecessor each time a count control signal is asserted, are known as up-counters and 

down-counters, respectively. A k-bit modulo-2k down-counter would go into negative 

2’s-complement values if it is decremented past zero. An up/down-counter can go in 

either direction, depending on the value of a direction control signal.  
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In what follows, we focus on up-counters that hold unsigned values. Asynchronous 

counters can be built of edge-triggered storage elements (flip-flops) and nothing else. The 

more commonly used synchronous counters are built of a register, a hardware 

incrementer, and some logic that allows the incremented count or an initial value to be 

loaded into the register when appropriate control signals are asserted. Figure 2 shows the 

block diagram for a synchronous counter. 

 

Count register 

Mux 

Incrementer 

+1 

Input 

Load 

Incr / Init 
___ 

x + 1 

x  

0      1 

 

Fig. 2. Synchronous binary counter with initialization capability. 

 

The counter design shown in Fig. 2 is adequate for most applications. It can be made 

faster by using a fast incrementer with carry-lookahead feature similar to that used in fast 

adders, to be discussed in Section VII. If still higher speed is required, the counter can be 

divided into blocks. A short initial block (say, 3 bits wide) can easily keep up with the 

fast incoming signals. Increasingly wider blocks to the left of the initial block need not be 

as fast because they are adjusted less and less frequently. 
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V Fixed-Point Numbers 

A fixed-point number consists of a whole or integral part and a fractional part, with the 

two parts separated by a radix point (decimal point in radix 10, binary point in radix 2, 

and so on). The position of the radix point is almost always implied and thus the point is 

not explicitly shown. If a fixed-point number has k whole digits and l fractional digits, its 

value is obtained from the formula: 

 

 x = ∑i=–l to k–1 xi r
i = (xk–1xk–2 . . . x1x0 . x–1x–2 . . . x–l) r    (4) 

 

In other words, the digits to the right of the radix point are given negative indices and 

their weights are negative powers of the radix. For example: 

 

 2.375 = (1 × 21) + (0 × 20) + (0 × 2–1) + (1 × 2–2) + (1 × 2–3) = (10.011)two  

 

In a (k + l)-digit radix-r fixed-point number system with k whole digits, numbers from 0 

to rk – r–l, in increments of r–l, can be represented. The step size or resolution r–l is often 

referred to as ulp, or unit in least position. For example, in a (2 + 3)-bit binary fixed-point 

number system, we have ulp = 2–3 and the values 0 = (00.000)two through 22 – 2–3 = 3.875 

= (11.111)two are representable. For the same total number k + l of digits in a fixed-point 

number system, increasing k will lead to enlarged range of numbers, whereas increasing l 

leads to greater precision. Therefore, there is a tradeoff between range and precision. 
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Signed fixed-point numbers can be represented by the same methods discussed for signed 

integers: signed-magnitude, biased format, and complement method. In particular, for 

2’s-complement format, a negative value –x is represented as the unsigned value 2k – x. 

Figure 3 shows encodings of positive and negative integers in the (1 + 3)-bit fixed-point 

2’s-complement format. Note that the positive values 0 to 7/8 (or 2k–1 – 2–l, in general) 

have the standard binary encoding, whereas negative values –1/8 to –1 (or –2–l to –2k–1, in 

general) are transformed to unsigned values by adding 2 (or 2k, in general) to them. 

 

 

0.000 
0.001 1.111 

0.010 1.110 

0.011 1.101 

0.100 1.100 

1.000 

0.101 1.011 

0.110 1.010 

0.111 1.001 

+0 
+.125 

+.25 

+.375 

+.5 

+.625 

+.75 

+.875 

-.125 

-.625 

-.25 

-.375 

-.5 

-1 
-.875 

-.75 

+ _  

 

Fig. 3. Schematic representation of 4-bit 2’s-complement encoding for (1 + 3)-bit fixed-

point numbers in the range [–1, +7/8]. 

 

The two important properties of 2’s-complement numbers, previously mentioned in 

connection with integers, are valid here as well; namely, the leftmost bit of the number 

acts a the sign bit, and the value represented by a particular bit pattern can be derived by 

considering the sign bit as having a negative weight. Here are two examples: 
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 (01.011)2’s-compl = (–0 × 21) + (1 × 20) + (0 × 2–1) + (1 × 2–2) + (1 × 2–3) = +1.375 

 (11.011)2’s-compl = (–1 × 21) + (1 × 20) + (0 × 2–1) + (1 × 2–2) + (1 × 2–3) = –0.625 

 

Conversion of fixed-point numbers from radix r to another radix R is done separately for 

the whole and fractional parts. Converting the whole part was discussed in Section I. To 

convert the fractional part, we can again use arithmetic in the new radix R or in the old 

radix r, whichever is more convenient. With radix-R arithmetic, we simply evaluate a 

polynomial in r–1 whose coefficients are the digits xi. The simplest way to do this is to 

view the fractional part as an l-digit integer, convert this integer to radix R, and divide the 

result by rl.  

 

To perform radix conversion using arithmetic in the old radix r, we repeatedly multiply 

the fraction y by the new radix R, noting and removing the integer part in each step. 

These integer parts correspond to the radix-R digits X–i, beginning from X–1. For example, 

we convert .175 to radix 2 as follows: 

 

 .175 multiplied by 2 yields .350 with integer part 0 

 .350 multiplied by 2 yields .700 with integer part 0 

 .700 multiplied by 2 yields .400 with integer part 1 

 .400 multiplied by 2 yields .800 with integer part 0 

 .800 multiplied by 2 yields .600 with integer part 1 

 .600 multiplied by 2 yields .200 with integer part 1 

 .200 multiplied by 2 yields .400 with integer part 0 

 .400 multiplied by 2 yields .800 with integer part 0 



Number Representation and Computer Arithmetic (B. Parhami / UCSB) 15 

 

Reading the recorded integer parts from top to bottom, we find .175 = (.00101100)two. 

This equality is approximate because the result did not converge to 0. In general a 

fraction in one radix may not have an exact representation in another radix. In any case, 

we simply carry out the process above until the required number of digits in the new 

radix have been obtained. 

 

VI Addition and Subtraction 

We will cover only integer addition and subtraction. Fixed-point numbers that are both in 

the same format can be added like integers by simply ignoring the implied radix point. 

When two bits are added, the sum is a value in the range [0, 2] which can be represented 

by a sum bit and a carry bit. The circuit that can compute the sum and carry bits is known 

as a half-adder (HA) with its truth table and symbolic representation shown in Fig. 4. The 

carry output is the logical AND of the two inputs, while the sum output is the exclusive 

OR (XOR) of the inputs. By adding a carry input to a half-adder, we get a binary full-

adder (FA) whose truth table and schematic diagram are depicted in Fig. 5.  

 

x    y    c     s 
---------------- 
0    0    0     0 
0    1    0     1 
1    0    0     1 
1    1    1     0 

Inputs          Outputs 

HA 

x y 

c 

s 
 

Fig. 4. Truth table and schematic diagram for a binary half-adder. 
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x    y    c     c    s 
---------------------- 
0    0    0     0    0 
0    0    1     0    1 
0    1    0     0    1 
0    1    1     1    0 
1    0    0     0    1 
1    0    1     1    0 
1    1    0     1    0 
1    1    1     1    1 

      Inputs               Outputs 

c out c in 

out in x 
 

y 
 

 s 
 

FA 

 

Fig. 5. Truth table and schematic diagram for a binary full-adder. 

 

A full-adder, connected to a flip-flop for holding the carry bit from one cycle to the next, 

functions as a bit-serial adder. The inputs of a bit-serial adder are supplied in synchrony 

with a clock signal, one bit from each operand per clock cycle, beginning from the least-

significant bits. One bit of the output is produced per clock cycle and the carry from one 

cycle is held and used as input in the next cycle. A ripple-carry adder, on the other hand, 

unfolds this sequential behavior into space, using a cascade of k full-adders to add two k-

bit numbers (Fig. 6). 

 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

x 

s 

y 

c 

c out c in 

0 0 

0 

c 0 

1 1 

1 

1 

2 2 

2 

2 4 

3 

3 

3 

3 

FA FA FA FA 

 

Fig. 6. Four-bit ripple-carry binary adder. 
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The ripple-carry design of Fig. 6 becomes a radix-r adder if each binary full-adder is 

replaced by a radix-r full-adder that accepts two radix-r digits (each encoded in binary) 

and a carry-in signal, producing a radix-r sum digit and a carry-out signal. Because the 

carry signals are always binary and their propagation is independent of the radix r, in the 

rest of this section and in Section VII, we do not deal with radices other than 2. 

 

An adder/subtractor for 2’s-complement numbers can be built by adding a controlled 

complementation circuit (a two-way multiplexer with y and its bitwise complement as the 

two inputs) to an adder of any type. The resulting circuit is shown in Fig. 7. To justify 

this design, note that x – y can be computed by forming the 2’s-complement of y and 

adding it to x. However, the 2’s-complement of y, which is 2k – y, can be computed by 

adding 1 to (2 k – 1) – y, the bitwise complement of y. The addition of 1 is accomplished 

by inserting a carry-in of 1 into the adder when it is used to perform subtraction. 

 

Mux 

Adder 

0      1 
  o 

x y 

y or y 
_ 

s 

add/sub 
___ 

c in 

Cont rolled 
complementation 

0 for addition,   
1 for subtraction 

 

Fig. 7. Two’s-complement adder/subtractor. 
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VII Fast Adders 

Ripple-carry adders are quite simple and easily expandable to any desired width. 

However, they are rather slow, because carries may propagate across the full width of the 

adder. This happens, for example, when the two 8-bit numbers 10101011 and 01010101 

are added. Because each full-adder requires some time to generate its carry output, 

cascading k such units together implies k times as much signal delay in the worst case. 

This linear amount of time becomes unacceptable for wide words (say, 32 or 64 bits) or 

in high-performance computers, though it might be acceptable in an embedded system 

that is dedicated to a single task and is not expected to be fast. 

 

A variety of fast adders can be designed that require logarithmic, rather than linear, time. 

In other words, the delay of such fast adders grows as the logarithm of k. The best-known 

and most widely used such adders are carry-lookahead adders. The basic idea in carry-

lookahead addition is to form the required intermediate carries directly from the inputs 

rather than from the previous carries, as was done in Fig. 6. For example, the carry c3 in 

Fig. 6, which is normally expressed in terms of c2 using the carry recurrence 

 

c3 = x2y2 + (x2 ⊕ y2)c2 

 

can be directly derived from the inputs based on the logical expression: 

 

 c3 = x2y2 + (x2 ⊕ y2)x1y1 + (x2 ⊕ y2)(x1 ⊕ y1)x0y0 + (x2 ⊕ y2)(x1 ⊕ y1)(x0 ⊕ y0)c0 
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To simplify the rest of our discussion of fast adders, we define the carry generate and 

carry propagate signals and use them in writing a carry recurrence that relates ci+1 to ci: 

 

 gi = xi yi   

pi = xi ⊕ yi 

ci+1 = gi + pi ci 

 

The expanded form of c3, derived earlier, now becomes: 

 

 c3 = g2 + p2 g1 + p2 p1 g0 + p2 p1 p0 c0 

 

It is easy to see that the expanded expression above would grow quite large for a wider 

adder that requires c31 or c52, say, to be derived. A variety of lookahead carry networks 

exist that systematize the preceding derivation for all the intermediate carries in parallel 

and make the computation efficient by sharing parts of the required circuits whenever 

possible. Various designs offer tradeoffs in speed, cost, VLSI chip area, and power 

consumption. Information on the design of fast carry networks and other types of fast 

adders can be found in books on computer arithmetic. 

 

Here, we present just one example of a fast carry network. The building blocks of this 

network are the carry operator which combines the generate and propagate signals for 

two adjacent blocks [i + 1, j] and [h, i] of digit positions into the respective signals for the 

wider combined block [h, j]. In other words 
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 [i + 1, j] ¢ [h, i] = [h, j] 

 

where [a, b] stands for (g[a,b], p[a,b]) representing the pair of generate and propagate 

signals for the block extending from digit position a to digit position b. Because the 

problem of determining all the carries ci is the same as computing the cumulative 

generate signals g[0,i], a network built of ¢ operator blocks, such as the one depicted in 

Fig. 9, can be used to derive all the carries in parallel. If a cin signal is required for the 

adder, it can be accommodated as the generate signal g–1 of an extra position on the right. 

  

 

¢ ¢ ¢ ¢ 

¢ ¢ 

¢ ¢ 

¢ ¢ ¢ 

[7, 7] [6, 6] [5, 5] [4, 4] [3, 3] [2, 2] [1, 1] [0, 0] 

[0, 7] [0, 6] [0, 5] [0, 4] [0, 3] [0, 2] [0, 1] [0, 0] 

g         p [0,1]    [0,1] 

g         p [1,1]    [1,1] 
g 
         p 
[0,0]     
         [0,0] 

[2, 3] 
[4, 5] 

[6, 7] 

[4, 7] 
[0, 3] 

[0, 1] 

 

Fig. 9. Brent-Kung lookahead carry network for an 8-digit adder. 
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For a k-digit adder, the number of operator blocks on the critical path of the carry 

network exemplified by Fig. 9 is 2( ⎡log2 k⎤  – 1). Many other carry networks can be 

designed that offer speed-cost tradeoffs. 

 

An important method for fast adder design, that often complements the carry-lookahead 

scheme, is carry-select. In the simplest application of the carry-select method, a k-bit 

adder is built of a (k/2)-bit adder in the lower half, two (k/2)-bit adders in the upper half 

(forming two versions of the k/2 upper sum bits with ck/2 = 0 and ck/2 = 1), and a 

multiplexer for choosing the correct set of values once ck/2 becomes known. A hybrid 

design, in which some of the carries (say, c8, c16, and c24 in a 32-bit adder) are derived via 

carry-lookahead and are then used to select one of two versions of the sum bits that are 

produced for 8-bit blocks concurrently with the operation of the carry network, is quite 

popular in modern arithmetic units. 

 

VIII Multiplication 

The simplest machine multipliers are designed to follow a variant of the pencil-and-paper 

multiplication algorithm depicted in Fig. 9, where each row of dots in the partial 

products bit-matrix is either all 0s (if the corresponding yi = 0) or the same as x (if yi = 1). 

When we perform a k × k multiplication manually, we form all of the k partial products 

and add the resulting k numbers to obtain the product p.  
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        o o o o 
        o o o o 
--------------- 
        o o o o 
      o o o o 
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Operands 

Partial  
products 
bit-matrix 

x 
y 

p  

Fig. 9. Multiplication of 4-bit numbers in dot notation. 

 

For machine execution, it is easier if the cumulative partial product is initialized to 0, 

each row of the bit-matrix added to it as the corresponding term is generated, and the 

result of addition shifted to the right by one bit to achieve proper alignment with the next 

term, as depicted in Fig. 9. In fact, this is exactly how programmed multiplication is 

performed on a machine that does not have a hardware multiply unit. The recurrence 

equation describing the process above is: 

 

 p(j+1)   = (p(j) + yj x 2k) 2–1    with  p(0) = 0  and  p(k) = p          (5) 
     |––– add –––| 
     |–– shift right ––| 

 

Because by the time we are done, the right shifts will have caused the first partial product 

to be multiplied by 2–k, we pre-multiply x by 2k to offset the effect of these right shifts. 

This is not an actual multiplication but is done by aligning x with the upper half of the 2k-

bit cumulative partial product in the addition steps. Figure 10 depicts a possible hardware 

realization of the foregoing shift-add multiplication algorithm. The shifting of the partial 

product need not be done in a separate step but can be incorporated in the connecting 

wires that go from the adder output to the doublewidth register. 
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After k iterations, recurrence (5) leads to: 
 

 p(k) = xy + p(0)2–k 

 

Thus if p(0) is initialized to 2kz (z padded with k zeros) instead of 0, the expression xy + z 

will be evaluated. This multiply-add operation is quite useful for many applications and 

is performed at essentially no extra cost compared to plain shift-add multiplication. 

 

Multiplier y 

Mux 

Adder 

0 

out c 

0       1 

Doublewidth partial product p  

Multiplicand x 

Shift 

Shift 

(j) 

j y 

y x j 

 

Fig. 10. Hardware multiplier based on the shift-add algorithm. 

 

The preceding bit-at-a-time multiplication scheme can be easily extended to a digit-at-a-

time algorithm in a higher radix such as 4, 8, or 16. In this case, the multiplexer in Fig. 10 

(which is really a bit-by-number multiplier) must be replaced with a digit-by-number 
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multiplier circuit (perhaps implemented as a multioperand adder), the single-bit shifts 

replaced by h-bit shifts for radix-2h algorithm, and the number of iterations reduced to 

from k to k/h. These faster high-radix multipliers may still be too slow for some 

applications. In such cases, fully combinational tree multipliers are used in which the 

addition of the partial products bit-matrix is done by means of a tree-structured 

combinational circuit.  

 

IX Fast Multipliers 

Instead of developing the partial products one at a time in radix 2 or in radix 2h, we can 

form all of them simultaneously, thus reducing the multiplication problem to n-operand 

addition, where n = k in radix 2, n = k/2 in radix 4, and so on. For example, a 16 × 16 

multiplication becomes a 16-operand addition problem in radix 2 or an 8-operand 

addition problem in radix 4.  

 

In tree multipliers, the n operands thus formed are added in two stages. In stage 1, a tree 

built of carry-save adders or similar compression circuits is used to reduce the n 

operands to two operands that have the same sum as the original n numbers. A carry-save 

adder (see Section XVI) reduces three values to two values, for a reduction factor of 1.5, 

thus leading to a ⎡log1.5(n/2)⎤-level circuit for reducing n numbers to two. The two 

numbers thus derived are then added by a fast logarithmic-time adder, leading to an 

overall logarithmic latency for the multiplier (Fig. 11). 
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Such a full-tree multiplier is rather complex and its speed may not be needed for all 

applications. In such cases, more economical partial-tree multipliers might be 

implemented. For example, if about half of the partial products are accommodated by the 

tree part, then two passes through the tree can be used to form the two numbers 

representing the desired product, with the results of the first pass fed back to the inputs 

and combined with the second set of partial products (Fig. 11). A partial-tree multiplier 

can be viewed as a (very-) high-radix multiplier. For example, if 12 partial products are 

combined in each pass, then a radix-212 multiplication is effectively performed. 

 

Adder 

Large tree of 
carry-save 

adders 

. . . 

All partial products 

Product 

Adder 

Small tree of 
carry-save 

adders 

. . . 

Several partial products 

Product 

Log-
depth 

Log-
depth 

 

Fig. 11. Schematic diagrams for full-tree and partial-tree multipliers. 

 

An array multiplier uses the same two-stage computation scheme of a tree multiplier, 

with the difference that the tree of carry-save adders is one-sided (has the maximum 

possible depth) and the final adder is of ripple-carry type (quite slow). An example 4 x 4 
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array multiplier is depicted in Fig. 12. HA and FA cells are half- and full-adders defined 

in Figs. 4 and 5, respectively, and MA cells are modified full-adders, one of whose inputs 

is internally formed as the logical AND of xi and yj.  

 

The reader may well ask why such a slow tree-type multiplier is of any interest at all. The 

answer is that array multipliers are quite suitable for VLSI realization, given their highly 

regular design and efficient wiring pattern. They can also be readily pipelined by 

inserting latches between some of the rows of cells, thus allowing several multiplications 

to be performed on the same hardware structure.  
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Fig. 12. Array multiplier for 4-bit unsigned operands. 
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X Division 

Like multipliers, the simplest machine dividers are designed to follow a variant of the 

pencil-and-paper division algorithm depicted in Fig. 13, where each row of dots in the 

subtracted bit-matrix is either all 0s (if the corresponding qi = 0) or the same as y (if qi = 

1). When we perform a 2k / k division manually, we form the subtracted terms one at a 

time by “guessing” the value of the next quotient digit, subtract the appropriate term (0 or 

a suitably shifted version of y) from the partial remainder (initialized to the value of the 

dividend x), and proceed until all k bits of q have been determined. At this time, the 

partial remainder becomes the final remainder z. 

 

                  o o o o 
         ---------------- 
o o o o | o o o o o o o o 
            o o o o 
              o o o o 
                o o o o 
                  o o o o 
          --------------- 
                  o o o o 

Dividend 

Subtracted 
bit-matrix 

x 

z Remainder 

Quotient  q 
Divisor y 

 

Fig. 13. Division of an 8-bit number by a 4-bit number in dot notation. 

 

For hardware or software implementation, a recurrence equation describing the process 

above is used: 

 

 z(j+1)   =   2 z(j) – qk–j y 2k    with   z(0) = x   and   z(k) = 2kz        (6) 
     |shift| 
     |–– subtract ––| 
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Because by the time we are done, the left shifts will have caused the partial remainder to 

be multiplied by 2k, the true remainder is obtained by multiplying the final partial 

remainder by 2–k (shifting it to the right by k bits). Figure 14 depicts a possible hardware 

realization of the foregoing shift-subtract division algorithm. As in multiplication, the 

shifting of the partial remainder need not be done in a separate step but can be 

incorporated in the wires connecting the adder output to the partial remainder register. 

 

Quotient q 

Mux 

Adder 
out c 

0      1 

Partial remainder z   (ini tial value x) 

Divisor y 

Shift 

Shift 

Quotient  
digit  

selector 

 Load 

1 
in c 

  o 

(j) 

 

Fig. 14. Hardware divider based on the shift-subtract algorithm. 

 

A comparison of Figs. 10 and 14 reveals that multipliers and dividers are quite similar 

and can be implemented with shared hardware within an arithmetic/logic unit (ALU) that 

performs different operations based on an externally supplied function code.  
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As in the case of multipliers, high-radix dividers speed up the division process by 

producing several bits of the quotient in each cycle. Whereas there is no counterpart to 

fast tree multipliers for performing division, array dividers do exist and are structurally 

quite similar to the array multiplier of Fig. 12. It is also possible to perform division by 

using a sequence of multiplications instead of additions. Even though multiplications are 

slower and costlier to implement than additions, advantage over additive schemes may be 

gained because far fewer multiplications are needed to perform division. Details can be 

found in any book on computer arithmetic. 

 

XI Real Numbers 

Integers in a prescribed range can be represented exactly for automatic processing, but 

most real numbers must be approximated within the machine’s finite word width. Some 

real numbers can be represented as, or approximated by, (k + l)-bit fixed-point numbers 

(see Section V). A problem with fixed-point representations is that they are not very good 

for dealing with very large and extremely small numbers at the same time. Consider the 

two (8 + 8)-bit fixed-point numbers shown below: 

 

 x = (0000 0000 . 0000 1001)two  Small number 

 y = (1001 0000 . 0000 0000) two  Large number 

 

The relative representation error due to truncation or rounding of digits beyond the –8th 

position is quite significant for x, but it is much less severe for y. On the other hand, 

neither y2 nor y / x is representable in this number format. 
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The most common representation of numbers for computations dealing with values in a 

wide range is the floating-point format. Old computers used many different floating-point 

number formats, and some specialized machines still do, but for the most part, the IEEE 

floating-point standard format (ANSI/IEEE Standard 754-1985; available from IEEE 

Press) has been adopted by the computer industry. We thus formulate our discussion of 

floating-point numbers and arithmetic exclusively in terms of this standard format. Other 

formats will differ in their parameters and representation details, but the basic tradeoffs 

and algorithms remain the same. 

 

A floating-point number has three components: sign ±, exponent e, and significand s, 

together representing the value ±2es. The exponent is a signed integer represented in 

biased format (a fixed bias is added to it to make it into an unsigned number). The 

significand is a fixed-point number in the range [1, 2). Because the binary representation 

of the significand always starts with “1.”, this fixed 1 is hidden and only the fractional 

part of the significand is explicitly represented.  

 

Figure 15 shows the details of short (32-bit) and long (64-bit) floating-point formats. The 

short format has adequate range and precision for most common applications 

(magnitudes ranging from 1.2 × 10–38 to 3.4 × 1038). The long format is used for highly 

precise computations or those involving extreme variations in magnitude (from about 2.2 

× 10–308 to 1.8 × 10308). Of course in both of these formats, as explained thus far, zero has 

no proper representation. To remedy this problem, and to be able to represent certain 
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other special values, the smallest and largest exponent codes (all 0s and all 1s in the 

biased exponent field) are not used for ordinary numbers. An all-0s word (0s in sign, 

exponent, and significand fields) represents +0; similarly, –0 and ±∞ have special 

representations, as does any nonsensical or indeterminate value, known as “not a 

number” (NaN). Certain other details of this standard are beyond the scope of this article. 

 

 

Short (32-bit) format 

Long (64-bit) format 

Sign  Exponent Significand 

 8 bits, 
 bias = 127, 
 -126 to 127 

 11 bits, 
 bias = 1023, 
 -1022 to 1023 

52 bits for fractional part  
(plus hidden 1 in integer part) 

23 bits for fractional part  
(plus hidden 1 in integer part) 

 

Fig. 15. The ANSI/IEEE standard floating-point formats. 

 

When an arithmetic operation produces a result that is not exactly representable in the 

format being used, the result must be rounded to some representable value. The 

ANSI/IEEE standard prescribes four rounding options. The default rounding mode is 

“round to nearest even”: choose the closest representable value and, in case of a tie, 

choose the value with its least-significant bit 0. There are also three directed rounding 

modes: “round toward +∞” (choose the next higher value), “round toward –∞” (choose 

the next lower value), and “round toward 0” (choose the closest value that is less than the 
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value at hand in magnitude). With the round-to-nearest option, the maximum rounding 

error is 0.5 ulp, while with directed rounding schemes, the error can be up to 1 ulp. 

 

XII Floating-Point Arithmetic 

The floating-point operations of multiplication and division are not much different from 

their fixed-point counterparts. For multiplication, exponents of the two operands are 

added and their significands are multiplied: 

 

 (±2e1s1)  × (±2e2s2) = ±2e1+e2(s1 × s2) 

 

Thus, a hardware floating-point multiplier consists of a significand multiplier and an 

exponent adder that together compute 2es, with e = e1 + e2 and s = s1 × s2. The result’s 

sign is easily obtained from the signs of the operands. This is not all, however. With s1 

and s2 in [1, 2), their product will lie in [1, 4) and may thus be outside the permitted 

range. If the product of the two significands is in [2, 4), dividing it by 2 via a 1-bit right 

shift will put it back into the desired range. When this normalization is needed, the 

exponent e must be incremented by 1 to compensate for the division of s by 2. 

 

Floating-point division is similar and is governed by the equation: 

 

 (±2e1s1) / (±2e2s2) = ±2e1–e2(s1 / s2) 
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Again, given that the ratio s1 / s2 of the two significands lies in (0.5, 2), normalization 

may be required for results that are less than 1. This normalization consists of multiplying 

the significand by 2 via a 1-bit left shift and decrementing the resulting exponent by 1 to 

compensate for the doubling of the significand. Of course, throughout the operation and 

ensuing adjustments, for both multiplication and division, the hardware must check for 

exceptions such as overflow (exponent too large) and underflow (exponent too small). 

 

We next discuss floating-point addition. Subtraction can be converted to addition by 

changing the sign of the subtrahend. To perform addition, the exponents of the two 

operands must be equalized, if needed. Consider the addition of ±2e1s1 and ±2e2s2 , with 

e1 > e2. By making both exponents equal to e1, the addition becomes: 

 

  (±2e1s1) + (±2e1(s2/2 e1–e2)) = ±2e1(s1 ± s2/2 e1–e2) 

 

We thus see that s2 must be right-shifted by e1 – e2 bits before being added to s1. This 

alignment shift is also called preshift (so named to distinguish it from the postshift needed 

for normalizing a floating-point result). Figure 16 shows a complete example of floating-

point addition, including preshift, addition of aligned significands, and final rounding. In 

this example, no postshift is needed because the result is already normalized. In general, 

though, the result may need a 1-bit right shift, when it is in [2, 4), or a multibit left shift 

when the addition of operands with different signs leads to cancellation or loss of 

significance and one or more leading 0s appear in the result. 
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Operands after alignment shi ft: 
 
x = 2   1.00101101 
y = 2   0.000111101101 

Numbers to be added: 
 
x = 2   1.00101101 
y = 2   1.11101101 

5 
1 

× 
× 

5 
5 

× 
× 

Extra bits to be  
rounded off 

Operand with  
smaller exponent  
to be preshifted 

Result of addition: 
 
s = 2   1.010010111101 
s = 2   1.01001100 

5 
5 Rounded sum 

× 
×  

Fig. 16. Alignment shift and rounding in floating-point addition. 

 

A simplified block diagram for a hardware floating-point adder is shown in Fig. 17. It is 

seen that once the operands are unpacked, their exponents and significands are processed 

in two separate tracks whose functions are coordinated by the block labeled “Control & 

sign logic.” For example, based on the difference of the two exponents, this unit decides 

which operand must be preshifted. To economize on hardware, usually only one 

preshifter is provided, say for the left operand of the adder. If the other operand needs to 

be preshifted, the operands are physically swapped. Also, in adding operands with unlike 

signs, the operand that is not preshifted is complemented. This time-saving strategy may 

lead to the computation of y – x when in fact x – y is the desired result. The control unit 

corrects this problem by forcing the complementation of the result if needed. Finally, 

normalization and rounding are preformed and the exponent is adjusted accordingly.  
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Fig. 17. Simplified schematic of a floating-point adder. 

 

XIII Function Evaluation 

In many numeric calculations, there is a need to evaluate functions such as square-root, 

logarithm, sine, or tangent. One approach to function evaluation is the use of an 

approximating function that is easier to evaluate than the original function. Polynomial 

approximations, derived from Taylor-series and other expansions, allow function 

evaluation by means of addition, multiplication, and division. Here are a few examples: 
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 ln x = 2(z + z3/3 + z5/5 + z7/7 + . . . ) where z = (x – 1)/(x + 1) 

 ex = 1 + x/1! + x2/2! + x3/3! + x4/4! + . . .   

 cos x = 1 – x2/2! + x4/4! – x6/6! + x8/8! – . . .   

 tan–1 x = x – x3/3 + x5/5 – x7/7 + x9/9 – . . .   

 

A second approach is convergence computation: begin with a suitable approximation and 

proceed to refine the value with iterative evaluation. For example, if q(0) is an 

approximation to the square root of x, the following recurrence can be used to refine the 

value, using one addition, one division, and a 1-bit right shift per iteration: 

 

 q(i+1) = 0.5(q(i) + x/q(i)) 

 

The initial approximation can be obtained via table lookup based on a few high-order bits 

of x or simply be taken to be a constant. As an example, suppose that we want to use this 

method to extract the square root of a floating-point number. To do this, we must halve 

the exponent and find the square root of the significand. If the exponent is odd, we can 

subtract 1 from it and double the significand, before applying this method. As a result, the 

adjusted significand will be in [1, 4). We may thus take 1.5 as our initial approximation. 

The better the initial approximation, the fewer the number of iterations needed to achieve 

a certain level of accuracy. A special case of convergence computation is when each 

iteration leads to the determination of one digit of the result, beginning with the most-

significant digit. Such digit recurrence schemes are similar in nature to shift-subtract 

division discussed in Section X. 
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There are many other methods for function evaluation. As our third and final example, 

we consider a method based on lookup tables which is becoming increasingly popular, 

given that tables can be implemented efficiently and compactly in VLSI technology. 

Within a reasonably narrow interval [x(i), x(i+1)), a function f(x) can be approximated by 

the linear function a + b(x – x(i)). This interpolation scheme leads to the hardware 

implementation depicted in Fig. 18. The range of x values is divided into 2h intervals 

based on the h high-order bits of x, which define the value xH. For each of these intervals 

[xH, xH + 2–h), the corresponding a and b values of the approximating linear function a + 

b(x – xH) = a + bxL are stored in two tables. Function evaluation with this method thus 

involves two table accesses, one multiplication, and one addition.  
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Fig. 18. Function evaluation by table lookup and linear interpolation. 
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XIV Precision and Errors 

Machine arithmetic is inexact for two different reasons. First, many numbers do not have 

exact binary representations within a finite word format. This is referred to as 

representation error. Second, even for values that are exactly representable, floating-

point arithmetic produces inexact results. For example, the exactly computed product of 

two short floating-point numbers will have a 48-bit significand that must be rounded to fit 

in 23 bits (plus the hidden 1). This is characterized as computation error. 

 

It is important for both the designers of arithmetic circuits and for the users of machine 

arithmetic to be mindful of these errors and to learn methods for estimating and 

controlling them. There are documented instances of arithmetic errors leading to disasters 

in computer-controlled critical systems. Even a small per-operation error of 0.5 ulp, when 

accumulated over many millions, perhaps billions, of operations needed in some 

applications, can lead to highly inaccurate or totally incorrect results.  

 

We limit our discussion of errors, their sources, and countermeasures to a few examples 

from floating-point arithmetic (see D. Goldberg’s article in “further reading” for more 

detailed discussion and other examples). 

 

One way to avoid excessive error accumulation is to carry extra precision in the course of 

a computation. Even inexpensive calculators use extra digits that are invisible to the user 

but help ensure greater accuracy for the results. Without these guard digits, the 

computation of 1/3 will produce 0.333 333 333 3, assuming a 10-digit calculator. 
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Multiplying this value by 3 will yield 0.999 999 999 9, instead of the expected 1. In a 

calculator with two guard digits, the value of 1/3 is evaluated and stored as 0.333 333 333 

333, but still displayed as 0.333 333 333 3. If we now multiply the stored value by 3, and 

use rounding to derive the result to be displayed, the expected value 1 will be obtained.  

 

Use of guard digits improves the accuracy of floating-point arithmetic but does not totally 

eliminate some incorrect and highly surprising results. For example, floating-point 

addition is not associative in that the algebraically equivalent computations (x + y) + z 

and x + (y + z) may yield very different results. Similarly. Many other laws of algebra do 

not hold for floating-point arithmetic, causing difficulties in result predictability and 

certification. An optimizing compiler that switches the order of evaluation for the sake of 

computation speed-up may inadvertently change the result obtained!  

 

One of the sources of difficulties is loss of precision that occurs when subtraction is 

performed with operands of comparable magnitudes. Such a subtraction produces a result 

that is close to 0, making the effect of previous roundings performed on the operands 

quite significant in relative terms. Such an event is referred to as catastrophic 

cancellation. For example, when the algebraically correct equation 

 

 A = [s(s – a)(s –  b)(s – c)]1/2 

 

with s = (a + b + c)/2, is used to calculate the area of a needlelike triangle (a triangle for 

which one side a is approximately equal to the sum b + c of the other two sides), a large 
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error can be produced due to the catastrophic cancellation in computing s – a. A user or 

programmer who is aware of this problem can use an alternate formula that is not prone 

to producing such large errors. 

 

Because of the anomalies and surprises associated with floating-point arithmetic, there is 

some interest in certifiable arithmetic. An example is offered by interval arithmetic 

whereby each number is represented by a pair of values, a lower bound and an upper 

bound. We represent x by the interval [xl, xu] if we are certain that xl ≤ x ≤ xu. Given 

interval representations of x and y, arithmetic operations can be defined in such a way as 

to ensure containment of the result in the interval that is produced as output. For example: 

 

 [xl, xu] + [yl, yu] = [xl + yl, xu + yu] 

 

In this way, we always have a guaranteed error bound and will know when a result is too 

imprecise to be trusted. 

 

The ultimate in result certification is exact arithmetic, which may be feasible in some 

applications through the use of rational numbers or other forms of exact representation. 

For example, if each value is represented by a sign and a pair of integers for the 

numerator and denominator, then numbers such as 1/3 will have exact representations 

and an expression such as (1/3) × 3 will always produce the exact result. However, 

besides limited applicability, exact rational arithmetic also implies significant hardware 

and/or time overhead. 
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XV Speed and Reliability 

We would, of course, like to design arithmetic circuits to be as fast as possible. The adder 

or multiplier must indeed be very fast if a machine is to execute one billion arithmetic 

operations per second. We now have this level of performance on some desktop 

computers, with 103 times greater performance in the largest available supercomputers, 

and 106 times more being worked on in research laboratories. Therefore, methods for 

speeding up arithmetic algorithms and their circuit implementations form an important 

part of the field of computer arithmetic. 

 

With modern VLSI technologies, design for high speed is a challenging undertaking. The 

crossing of the gigahertz milestone in microprocessor clock rates signals the fact that 

many hardware operations are occurring with subnanosecond latencies. Because an 

electronic signal can travel only a few centimeters in one nanosecond, the roles of 

interconnects and package boundary crossings are becoming increasingly important. 

Given that clock distribution accounts for a significant portion of long wires and power 

dissipation on a modern VLSI chip, there is significant incentive to do away with the 

clocked or synchronous design style and adopt a fully asynchronous approach. 

 

Speed is but one of several parameters that a designer must consider. In recent years, 

compactness and power economy have emerged as important attributes of an 

implementation. Design for compactness requires careful attention to implementation and 

packaging technologies and their various constraints. One important aspect to consider is 

the pin limitation at the chip and other levels of the hardware packaging hierarchy. Power 
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economy is somewhat related to compactness, but it also depends on signal transition 

activity and circuit speed (faster circuit technologies use more power). Signal transition 

activity can be reduced via judicious choice of encoding schemes and careful algorithm 

design. Circuit speed can be reduced, while still keeping the same level of performance 

through various architectural schemes. 

 

A particularly useful method of designing high-throughput arithmetic circuits without a 

need for ultrahigh-speed circuit elements is pipelining. We explain the use of pipelining 

and the various tradeoffs involved in its implementation through an example. Consider 

the array multiplier of Fig. 12. The critical (longest) signal path through this circuit goes 

through four MA, one HA, and three FA blocks. This path begins at the upper left corner 

of the diagram, proceeds diagonally to the lower right and then horizontally to the lower 

left corner. Assuming, for simplicity, that all three block types have the same unit-time 

latency, one multiplication can be performed every 8 time units.  

 

By cutting the design of Fig. 12 in half, right below the last row of MA blocks, and 

inserting temporary storage platforms (latches) to hold intermediate signal values at that 

point, we can double the throughput of our multiplier. Once the intermediate signals from 

one multiplication are stored in the latches, a second multiplication can begin in the upper 

part of the circuit, while the lower part completes the first multiplication. Of course, if we 

insert more latches, the throughput will increase even further. The improvement is not 

indefinite, though, because the insertion of more latches introduces increasing overheads 

in cost and time. 
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When results of an arithmetic unit are critical to the safety of humans or success of a 

mission, some form of checking must be performed. Design methods for fault-tolerant 

arithmetic form active research areas. Here, we just mention one simple method based on 

residue checking (for more information on this and other types of checking, see T.R.N. 

Rao’s Error Codes for Arithmetic Processors, Academic Press, 1974).  

 

Suppose that each value is represented by appending to it the residue modulo A, where A 

is a suitably chosen check constant. Then addition can be checked in the manner shown 

in Fig. 19. If the mod-A sum of the two check tags does not match the mod-A value of the 

computed sum s, then the presence of an error is signaled. Special attention must be paid 

to the design of the various components in Fig. 19 to ensure that matching of the two 

residues implies fault-free operation with very high probability. 

 

Add 

x, x mod A 

Add mod A  

Compare 
Find 
mod A 

y, y mod A 

s, s mod A Error 

 Not 
 equal 

 

Fig. 19. Arithmetic unit with residue checking. 
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XVI Unconventional Number Systems  

Thus far, our discussion of computer arithmetic was based mostly on standard 

representations that are widely used in digital systems; namely, 2’s-complement binary 

and ANSI/IEEE floating-point format. Other number representation systems are either 

invisible to the computer user (used to encode intermediate values for speeding up 

arithmetic operations) or are applied in the design of application-specific systems. In this 

section, we briefly review two examples of number systems in each of these categories. 

These are only meant to give the reader a sense that other options exist (see B. Parhami’s 

textbook in “further reading” for more detailed discussion and other examples). 

 

The carry-save (or stored-carry) representation for binary numbers is extensively used in 

the design of fast multipliers and other arithmetic circuits. A carry-save number is 

essentially a pair of binary numbers whose sum is the value being represented. Given 

such a carry-save value, it can be added to an ordinary binary number, yielding a carry-

save result at very high speed, because the addition does not involve any carry 

propagation. Figure 20 shows the addition of a binary number x to a carry-save number 

composed of y and z, yielding the carry-save number composed of s and c. Comparing 

Fig. 20 to Fig. 6 reveals the origins of the name “carry-save”; note that here, unlike in 

Fig. 6, carries are not connected to the next FA block but are saved along with the sum 

bits to form a carry-save number.  
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x 

s 

y x 

s 

y x 

s 

y x 

s 

y 0 0 

0 

1 1 

1 

2 2 

2 

3 

3 c 2 

3 

FA FA FA FA 

z 3 z 2 z 1 z 0 

c 3 c c 1 4 
 

Fig. 20. Three binary numbers reduced to two numbers by a carry-save adder. 

 

Carry-save numbers can be viewed as radix-2 numbers that use the digit set {0, 1, 2}. 

From this observation, it is easy to generalize to other redundant representations such as 

signed-digit numbers. For example, radix-8 numbers with the digit set [–5, 5] can be 

added without carry propagation chains; the carry only affects the next higher position 

and nothing else. Details are beyond the scope of this article. 

 

The logarithmic number system (LNS) is an example of number representation for 

application-specific systems. In LNS, a value x is represented by its sign and the 

logarithm of its absolute value in some base. For example, if we use base-2 logarithms, 

with 4 whole and 4 fractional bits, the numbers 8 and 11 are represented as 0011.0000 

and 0011.0111, respectively. The key advantage of LNS is that it allows us to multiply or 

divide numbers through addition or subtraction of their logarithms. For example, the 

product and ratio of 11 and 8 are found as follows: 

 

 log2 11 + log2 8 = (0011.0111)two + (0011.0000)two = (0110.0111)two   

 log2 11 – log2 8 = (0011.0111)two + (0011.0000)two = (0000.0111)two   
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Addition and subtraction, on the other hand, become somewhat more complicated but 

they are still manageable with help from lookup tables. Details are beyond the scope of 

this article. Suffice it to say that practical applications of this representation have thus far 

been limited to short word widths; however, available methods are improving and an 

LNS with range equivalent to the short ANSI/IEEE floating-point format has recently 

been implemented as part of a European microprocessor project. 

 

The residue number system (RNS) has a long history dating back to the ancient Chinese. 

Use of this representation method in computer arithmetic was proposed in the late 1950s. 

Despite this long history, applications have remained limited due to the fact that RNS 

makes some key arithmetic operations, such as division and magnitude comparison, quite 

difficult. Its main advantages are simple addition and multiplication, thus making 

applications in which these two operations are predominant more suitable for RNS 

implementation. In RNS, each number is represented by a set of residues with respect to a 

set of pairwise relatively prime moduli. For example, given the moduli set {3, 5, 7}, the 

numbers 11 and 8 are represented by the set of their residues with respect to the moduli, 

thus leading to the codes (2, 1, 4) and (2, 3, 1), respectively. The number of distinct 

natural numbers that are represented is 3 × 5 × 7 = 105. This set of values can be used to 

represent the natural numbers 0 to 104 or signed values –52 to +52.  

 

In our example RNS with the moduli set {3, 5, 7}, adding or multiplying the numbers 11 

and 8 is done by separately operating on the three residues, with each operation 

performed modulo the corresponding modulus. We thus get: 
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 (2, 1, 4) + (2, 3, 1) = (4 mod 3, 4 mod 5, 5 mod 7) = (1, 4, 5) 

 (2, 1, 4) × (2, 3, 1) = (4 mod 3, 3 mod 5, 4 mod 7) = (1, 3, 4) 

 

Despite lack of widespread applications, both LNS and RNS remain important from a 

theoretical standpoint. Additionally, there are indications that with advances in arithmetic 

algorithms and VLSI technology, these two methods may find greater use in future (for 

information on applications of RNS arithmetic in signal processing, see Residue Number 

System Arithmetic, edited by M.A. Soderstrand, W.K. Jenkins, G.A. Jullien, and F.J. 

Taylor, IEEE Press, 1986). 

 

XVII Research Directions 

Computer arithmetic has played a central role in the development of digital computers. 

A.W. Burkes, H.H. Goldstine, and J. von Neumann, in their now classic 1946 report 

entitled “Preliminary Discussion of the Logical Design of an Electronic Computing 

Instrument,” set the stage for many ingenious schemes to perform fast arithmetic on early 

digital computers, at a time when even the simplest circuits where bulky and expensive. 

After more than half a century, research and development is still continuing unabated, for 

even though many of the theoretical underpinnings of the field are now well understood, 

new application challenges must be faced and old solution schemes must be adapted to 

emerging technological constraints and opportunities.  
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Examples of active research issues in computer arithmetic at the turn of the twenty-first 

century include reducing power consumption, efficient handling of low-precision 

multimedia data, subnanosecond operations, area-efficient implementations, configurable 

processing elements, function evaluation with no error other than that dictated by the 

mandatory rounding, certifiable arithmetic, compatibility/portability of numerical 

software, applying novel computational paradigms, and fundamental theoretical limits. 

New results in the field appear in Proceedings of the Symposia on Computer Arithmetic, 

currently held in odd-numbered years, and in archival technical journals such as IEEE 

Transactions on Computers, which occasionally devotes entire special issues to the topic. 

Web resources can be accessed via the author’s home page at http://www.ece.ucsb.edu. 
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Array multiplier 
Carry lookahead 
Convergence method 
Fast carry network 
Fixed-point number 
Floating-point number 
Full-adder 
High-radix arithmetic 
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Residue arithmetic 
Ripple-carry adder 
Rounding 
Signed magnitude 
Table-lookup scheme 
Tree multiplier 
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