Design of m-out-of-n Bit-Voters

Behrooz Parhami

Dept. of Electrical & Computer Engineering
University of California
Santa Barbara, CA 93106, USA

Abstract

Several synthesis methods for m-out-of-n bit-voting
networks are described and the costs of the resultant
designs are compared. In the special case of majority
voting (with gate count used as the cost index), it is
shown that a multiplexer-based design method yields the
best realizations for small n, while designs based on
selection networks are most efficient when n is large.
Other design techniques are offered that might be more
efficient with particular technologies or when certain
standard building blocks are to be used in the hardware
realization. Most of these designs can be extended to the
general case of unequal vote weights (weighted voting).

0 Introduction

The idea of voting to obtain highly reliable results
from multiple, less reliable, computation channels has
been used extensively in the design of fault-tolerant
computer systems. When voting is to be performed
frequently and at a relatively low level, high-throughput
hardware voters must be utilized. In this paper, we report
some results from an ongoing research project dealing
with general design paradigms for hardware bit- and word-
voters as well as efficient algorithms for software voting
on more complex data objects {2], [3], [4].

We consider the design of an m-out-of-n bit-voter
(henceforth simply voter) defined as a circuit with n
inputs x;,i=1,2, ..., n, and a single output y, such that
¥ = Liff at least m of the n inputs are 1. Note that our
definition is asymmetric with respect to 0 and 1 in that an
output of 0 does not imply and is not implied by the
presence of at least m zeros at the inputs. Such
asymmetry should not be worrisome and is in fact useful
in the design of systems where one of the two output
values is considered ‘safe’. It is easy to modify the
designs such that 0/1 symmetry is achieved and an extra
output indicates when neither 0 nor 1 has the required
quorum. Majority voting corresponds to the special case
of m =[(n + 1)/2] and has 0/1 symmetry for odd n.

1058-6393/91 $1.00 © 1991 IEEE

1260

1 Gate-Level Designs

A voter can be constructed as a two-level AND-OR
(equivalently NAND-NAND) digital logic circuit with g=
n!/m! (n — m)!] m-input AND gates and a single g-input
OR gate for small values of the parameters m and n.
Also, a two-level OR-AND realization, requiring g’ =
n!fi(m - 1)! (n —m + 1)!1] (n—m+1)-input OR gates and a
single g’-input AND gate, is possible. In the first
realization, all distinct subsets of m inputs are ANDed
together and the voter output is 1 if at least one of the
AND results is 1. In the second realization, all possible
subsets of n —m + 1 inputs are ORed together and the
voter output is 0 if at least one of the OR results is 0.

The two-level AND-OR realization is ‘simpler’ than
the two-level OR-AND version (in terms of both gate
count and gate-input count) iff m > (n + 1)/2. The
complexities are equal for odd nif m = (n + 1)/2. Asan
example, for a 2-out-of-5 voter, the two-level AND-OR
design uses 10 two-input AND gates and a single 10-
input OR gate while the OR-AND design is less complex
with 5 four-input OR gates and one S-input AND gate.

For large values of n, two-level designs are
impractical. Assuming the use of f-input gates and
ignoring the possibility of gate sharing, the total number
of gates in the two-phase AND-OR and OR-AND
realizations will change from g + 1 and g’ + 1 to:

G =gl(m-0uf- D1+ - -1l
G'=g'Tn-myf- 1+ - 1)/~ 1)]

These expressions are obtained by replacing each gate
with a tree of f-input gates implementing the same
function. The circuit delays will increase to [log,m | +
log,g7and rlogf (n—m+ 1)]+[log, g1 gate levéls.

\’Gith gate sharing, an exact genera{gate-coum analysis
becomes difficult. However bounds for the number of
gates can be obtained that are close to actual values and
show the excessive complexity of this approach for large
values of n. It is thus imperative to explore more
structured design techniques.

2 Decomposition-Based Designs

Hierarchical decomposition strategy (divide-&-conquer)
can be used to facilitate the design. There are two ways to
proceed with the decomposition approach:

1. Picking a partitioning scheme and then designing a

suitable merging network.
2. Selecting a merging network and then designing
the required partitioning algorithm.

With the first approach, we divide the inputs into disjoint
subsets, enumerate the various combinations in which
different subsets can contribute votes in such a way that
the voting threshold is matched or exceeded, provide
smaller voters to realize these contributions, and finally,
design a logic network for combining the results.
Because the subsets can be selected in many different
ways, this approach does not lend itself to general
analyses. We will thus limit our discussion to a simple
example.

Consider the design of a 3-out-of-5 voter using the
subsets Sy = {x1,x2,x3} and S7 = {x4,x5)}. The
combinations that match or exceed the threshold of 3 are:

3-of-3 in §1 + (2-0f-3 in §1 and 1-of-2 in §7) +
(1-0f-3 in S} and 2-0f-2 in §7)

This yields the logical expression x1x2x3 + (x1x2 +
x2x3 + x3x1)(x4 + x5) + (x] + x2 + x3)x4x5 which
directly translates into a 4-level logic circuit with 10 gates
and 25 input lines.

We next explore the second decomposition strategy
with multiplexers used as merging networks. Our interest
in this approach arises from the availability of
multiplexers as off-the-shelf universal components. The
strategy is to select a subset of the inputs as control
inputs to a multiplexer, determine the residual input
functions, and then repeat the process for each function, if
needed, until easily realizable functions are obtained.

For example, with a 2-input multiplexer in the first
decomposition stage, the residual functions correspond to
an m-out-of-(n-1) voter and an (m-1)-out-of-(n-1) voter.
To design a 3-out-of-5 voter using 2-input multiplexers,
we take x1 as the first control variable. The residual
functions corresponding to x; = 0 and x7 = 1 are x3x3x4
+ X2X3X5 + x2x4%5 + x3x4%5 and x2x3 + X2x4 + X2x5
+ x3x4 + X3x5 + x4x5, yielding the result

[x'1[x"2(x3x4x5)+x2h] +x1[x'2h+x2(x3+x4+x5)]]
where h = x3x4 + x3x5 + x4x5 has the 2-input
multiplexer realization A = [x"3(x4x5) + x3(x4+x5)]. The
resulting circuit is shown in Figure la. Clearly, a 4-
input multiplexer can replace the last two levels. With 8-
input multiplexers, the expression becomes

[x'1x"2x3h1 + x"1x2x3h1 + x"1x2x3h2 + x1x'2x"3h] +
x1x2x3h + x1x2x"3h2 + x1x2x3]

1261

where h] = (x4x5) and hp = (x4 + x5). The resulting
circuit is depicted in Figure 1b.

3 Arithmetic-Based Design

In the ‘arithmetic’ approach, the sign of -m + Xx; is
computed and the voting result is the complement of this
sign. A parallel counter [5] to compute Xx; followed by
a circuit to compare the sum to m (or a single
‘accumulative parallel counter’) can easily compute the
output. Designs for parallel counters are based on carry-
save reduction techniques which are used extensively in
reducing multiple-operand additions to two-operand
additions. Cost and delay analyses for such reductions are
available [5], [6]. One advantage of the arithmetic-based
design is that it can be easily extended to the case of
unequal vote weight as discussed in Section 6.

4 Design with Selection Networks

The design of an m-out-of-n voter is equivalent to
selecting the mth largest value from among » input bits.
Selection networks can be built from 2-sorter
(comparator) cells. Knuth [1] defines three types of
selection networks with n inputs:

1. Select the m largest values and move them to m
outputs in no particular order.

Select the mth largest value and move it to a
specified output line.

3. Select the m largest values and move them to m

output lines in sorted order.
Denoting the number of 2-sorter or comparator cells by
U(m, n), V(m, n), and W(m, n) for type-1, type-2, and
type-3 selectors above, we have:

U@n,n) £ V(m,n) £ W(m, n)

When dealing with bits, a two-sorter simply consists of a
pair of 2-input gates: An OR to produce the larger and an
AND to produce the smaller of the two values.

Type-3 selectors do more than what is required here.
Type-2 selectors do exactly what we want. However, for
most practical values of m and n, a type-1 selector
augmented by an AND or OR circuit (that indicates
whether all of the m largest values are 1s or whether all of
the n — m + 1 smallest values are not all 0s) is both faster
and more economical.

Consider the design of a 4-out-of-8 voter. The required
type-1 selection network that selects the 4 largest bit
values and moves them to the upper half of the output
lines is given in Figure 2, where each heavy vertical line
represents a comparator that moves the larger of the two
input values to the upper and the smaller value to the
lower line. This selector requires 14 comparators or 28
two-input gates with 4 gate levels of delay. A 4-input

2.

AND gate connected to the upper 4 outputs completes the
circuit. Note that a 5-out-of-8 majority voter results if we
connect an OR gate to the lower 4 output lines.

5 Comparison of Various Designs

We will compare the designs only for simple majority
voters (i.e., when m = |_n/2T:- 1). Figure 3 shows the
cost of majority voters designed based on 2-level logic
expressions (‘gate-level’), two-input multiplexer
decomposition, the arithmetic-based approach, and
selection networks, assuming maximum gate fan-in of 4.
Figure 3 indicates that the gate-level or multiplexer-based
approach is best for small values of n whereas selection
networks offer the most economical solution for larger
values of n. The theory of selection networks is well-
developed and efficient designs are available {1].

A comparison of delays is much more difficult. If the
designs are used with pipelining [2), the differences in
latencies (number of gate levels) are not significant as far
as throughput is concerned. However, the number of gate
levels does affect the cost due to the requirement for
latches between pipeline stages. A general analysis is
impractical because the number of logic signals going
from one pipeline stage to the next cannot be expressed as
a simple function of the relevant parameters.

6 Weighted Bit-Voters

If each of the n bit-inputs x;,i=1,2, ..., n, has an
associated vote v; such that the output 1 is produced iff
the sum of votes associated with the inputs having the
value 1 is no less than a threshold ¢, then we have a
generalized t-out-of-Yv; voter.

The techniques discussed in the preceding sections can
be extended for such voters. The only exception concerns
selection networks that can be used here only if the vote
weights are small integers. The way to do this is to fan-
out each input to v; inputs of a (Tv;)-input voter.
However such designs tend to be highly inefficient.

The arithmetic-based approach is ideally suited to this
case. As a simple example, consider the design of 6-input
voter where the inputs have the associated votes of 2, 2,
2,1, 1, 1 and the voting threshold is 5. The arithmetic
expression to be evaluated is

—5+2xl +h2+2X3+X4+X5+X6
The reduction steps in our multiple-operand addition usin g
full-adder and half-adder cells are shown in the following
diagram. Here, 1011 is the 4-bit 2’s-complement
representation of the constant —5. Three of the inputs are
written in the second column because they carry a weight
of 2. If the weight of x; were 3, say, then x; would be
written in both the first and the second column. Each

1262

vertical box encloses the inputs to a full or half adder and
the associated horizontal box encloses the two outputs.
The diagram shows level 1 with 2 full adders and level 2
with 1 full adder and 1 half adder. A 2-bit adder can be
used to reduce the remaining y and z bits in the middle
two columns, with the carry-out of this adder providing
the final output. The leftmost 1 can be ignored since it
causes only a complementation that cancels the
complementation needed for obtaining the resultant output
from the sign bit.

1 1 1
X1 x4
frr X2 i xg
1 i1 g0
, L ag |
Yo b ibg)
CASNERS
1 Y (¥ Yo)
[z, Zy)

A particularly useful arithmetic-based design scheme is
depicted in Figure 4. Here a pair of binary trees,
composed of adders of appropriate lengths, tally the votes
for 0 and 1 inputs. The ‘compare and select’ circuit at the
right produces the final output. The number of adders
required for an n-input voter is 2n — 2 and the longest
adder deals with operands of length log,(Xv)).

The multiplexer-based approach works fine with
weighted voting if proper care is taken to select the
control variables in an optimal order.

7 Conclusions

A theoretical study of weighted voting [4] has shown
that voting is at least as complex as sorting when the size
of the input space is large. On the other hand with a
small input space of size & (6 = 2 for bit-voting), linear-
size, logarithmic-time voters are practically realizable. In
this paper, we have explored and compared some useful
design techniques for m-out-of-n and the more general ¢-
out-of-Yv; weighted bit-voters.

Despite the fact that the designs are quite practical, and
in some cases asymptotically optimal, no claim is made
as to their absolute efficiency or optimality. There may
be other methods that yield better designs for a given set

of requirements. The optimality question and several
extensions to the design techniques discussed here are
being investigated as part of an ongoing research project.

References

{11 Knuth, D.E., The Art of Computer Programming —
Vol. 3: Sorting and Searching, Addison-Wesley,
1973, Section 5.3.4, pp. 220-246.

{2] Parhami, B., “High-Performance Parallel Pipelined
Voting Networks”, Proc. of the International Parallel
Processing Symp., Anaheim, CA, Apr./May 1991,
pp. 491-494,

(3]

(4]

[5]

(6]

Parhami, B., “Voting Networks”, IEEE Transactions
on Reliability, Vol. 40, pp. 380-394, Aug. 1991.

Parhami, B., “The Parallel Complexity of Weighted
Voting”, Proc. of the International Conf. on Parallel
and Distributed Computing and Systems,
Washington, DC, Oct. 1991, pp. 382-385.

Swartzlander, E.E., “Parallel Counters,” IEEE
Transactions on Computers, Vol. C-22, No. 11,
Nov. 1973, pp. 1021-1024.

Waser, S. and MLJ. Flynn, Introduction to Arithmetic
for Digital System Designers, Holt, Rinehart, &
Winston, 1982.

X, X2
5 5 h, 2
3 y
4 Mux
h 5
2| s
1_.7
(a) (b)
Figure 1. Multiplexer-based realizations for a 3-out-of-5 bit-voter.
Two 4-Sorters
: I : i The Four
N ’ I : i Largest
; : i Input
P I : | Values
T |
s A E

...

Figure 2. Network of comparators to select the 4 largest of 8 values.

1263

Number of Gates
120

Gate-Level

40

(=)

8 12

n

Figure 3. Cost of simple majority bit-voters with different designs as a function of input size n.

Demultiplexers

9 Compare_—y

and

e Select |

Figure 4. A 5-input weighted bit-voter constructed according to the ‘vote-tallying’ method.

1264

