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Abstract

Inter-module bandwidth is one of the major constraints
on the performance of current and future parallel sys-
tems. In this paper, we propose and evaluate several
high-performance bus-based parallel architectures, includ-
ing bus-based cyclic networks (BCNs) and quotient cyclic
networks (BQCNs), which are particularly efficient in view
of their respective inter-module communication patterns.
The inter-cluster connection in a BCN is defined on a set of
nodes whose addresses are cyclic shifts of one another. The
node degree of a basic BCN is 3; while those of BOCNs and
enhanced BCNs can vary from a small constant (e.g., 2) to
as large as required, thus providing flexibilitv and effective
tradeoff between cost and performance. A variety of algo-
rithms can be performed efficiently on these networks, thus
proving the versatiliry of BCNs and BQCNs.

1 Introduction

The design of the interconnection architecture is
one of the most important and difficult tasks for a high-
performance multiprocessor system. The choice of the in-
terconnection topology may affect several characteristics of
the final system, such as performance, ease of programming,
reliability, scalability, and complexity of physical layout.
Hypercubes, star graphs [1] and generalized hypercubes [4]
have desirable topological, algorithmic, and fault tolerance
properties, but they tend to have high node degrees for large
system sizes. To overcome the problem of unbounded node
complexity in large hypercube or star networks, some I/O
bounded variants or alternatives, such as the cube-connected
cycles (CCC) [21], shuffle-exchange, de Bruijn graph, but-
terfly networks [ 18], periodically regular chordal rings [19],
and star connected cycles (SCC) [2, 17] have been intro-
duced and shown to have some desirable properties.

In addition to network latency, inter-module bandwidth
is one of the major factors limiting the performance of cur-
rent and future parallel systems. One of the main advan-
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tages of hypernets, a class of communication-efficient in-
terconnection architectures, is that the required transmis-
sions tends to be confined within basic modules [13]; that
is, the required numbers of transmissions between basic
modules are considerably fewer than those of other topolo-
gies, such as hypercubes and star graphs, for many com-
munication problems. Other interconnection topologies that
have such a localized communication property include SCC,
WK-recursive networks [23], hierarchical shuffie-exchange
(HSE) networks [5], hierarchical cubic networks (HCN)
[9], hierarchical folded-hypercube networks (HFN) [7], re-
cursively connected complete (RCC) networks [12], and
swapped networks (SN) [25].

Pin minimization is another important issue for high-
performance parallel architectures since the number of pro-
cessors that can be placed on a chip or board is often lim-
ited by off-chip or off-board connections for large systems
[3, 6, 8]. Several bus-based parallel architectures have been
proposed in order to minimize the number of pins required
per processor and/or to enhance their performance [8].

In this paper, we propose several parallel architectures,
including cyclic networks (CNs) and quotient cyclic net-
works (QCNs), which are particularly efficient in view of
the required inter-module transmissions for many problems.
The node degree of a basic BCN is 3; while those of BQCNs
and enhanced BCNs can vary from a small constant (e.g.,
2) to as large as required, thus providing flexibility and ef-
fective tradeoff between cost and performance. The diame-
ters of BCNs and BQCNs and the required inter-module traf-
fic for many problems are asymptotically optimal within a
small constant factor from their lower bounds. A BCN can
use identical copies of any small network as its basic mod-
ules, connected through a set of nodes whose addresses are
cyclic shifts of one another. The required data movements
when performing many important algorithms on BCNs are
largely confined within basic modules, thus leading to small
network delay when the delay associated with transporting
a packet through an on-module link is small.

The remainder of this paper is organized as follows. In



Section 2, we define basic bus-based cyclic networks, de-
rive their parameters, and present a simple and fast rout-
ing algorithm. In section 3, we show that BCNs and quo-
tient BCNs are efficient in terms of inter-module communi-
cation. In Section 4, we generalize the construction to en-
hanced BCNs, and show that the results for basic BCNs can
be easily generalized to the entire family. In Section 5, we
compare and summarize the hardware properties of BCNs
and some competing parallel architectures.

2 Basic Bus-Based Cyclic Networks

In this section, we give the definition of basic cyclic net-
works (basic CNs), also called ring-cyclic networks (Ring-
CNs), explore some of the properties for basic bus-based
CNs, and introduce the needed notation. A network is rep-
resented as a graph, whose nodes and edges represent pro-
cessors and links, respectively. For convenience, for any
J1 2 ja,weletZ;.;, denote Z; Z; -+ Z;,, where Z can be
any symbol, such as U,V or X.

Definition 2.1 (Ring-Cyclic Network, Ring-CN(/, G))

Letthe nucleus be G = (¥, Eg). Anl-level ring-cyclic net-
work based on the nucleus G is defined as the graph Ring-
CN(/,G) = (V, %), where ¥V = {V;./[V; € V5,i = 1,...,1}
is the set of vertices, and £ = {(U;.,V;:)[Ui.V; € Vg,i =
1,2,...,1, satisfying Uy, = Vp., and (U1,V)) € Zg, or U; =

Vimod n+10 0 Vi=U; mod sy for 1 <i < 1} is the set of
edges.

In other words, two nodes {/ and V are connected by an
undirected link if the /-symbol addresses of nodes U and V
are cyclic shifts of one another (see Fig. 1); nodes are also
connected as the graph G if they are within the same nucleus.
We denote the address obtained from X by i/ right shifts as
X", Thatis, X9 = X and X' = X, X;;,, for | <i <1,
where X = X,.;. Note that X(/) = x(imod /),

As in other hierarchical networks such as HCN, HFN, hy-
pernets, RCC, and CCC, the choice of basic module is cru-
cial to the performance of the resultant CNs. By using a bus-
based nucleus, one can obtain the following three advan-
tages for such networks: 1) smallest node degree, 2) small-
est diameter, and 3) balanced traffic. Buslet is suitable for
CNs since a routed packet tends to traverse from one node
to any other node in the same nucleus with comparable prob-
ability. Balanced traffic for a BCN can be achieved by ap-
propriately selecting the bandwidth of the buses within the
nucleus. In this paper, we assume that a nucleus buslet is im-
plemented on a single chip in order to increase the processor-
memory and intra-nucleus bandwidths, or more generally,
on a single module (e.g., a board). Similar assumptions are
used for several networks, such as hypercubes and several
parallel architectures proposed in {22, 15].

An [-level basic bus-based cyclic network (ba-
sic BCN(/,M) or Ring-BCN(/, M)), is obtained by replac-
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Figure 1. The derivation of shift links (neigh-
bors) of a node X = X, in a basic CN(4,G),
where the nucleus G has M nodes with8 < M <
16. Symbols X, € [0,M — 1],i =1,2,3,4, are rep-
resented by 4-bit binary numbers x; |.4; ).

ing the nucleus G with M processors connected to acommon
bus, where M is the number of nodes in G. Thus, a Ring-
BCN(/,M) has M! nodes of degree at most equal to 3, and its
nucleus is called an M-node buslet. Each node is connected
to other nodes within the same nucleus via the bus and to
two other neighbors via the left- (right-) shift links, where
the left- (right-) shift neighbors of node X are X(=1(x(1),

Note that a node with / identical symbols in its address
has no shift links (or, alternatively, has shift links connect-
ing to itself) and is called a leader. 1.eaders can be used as
I/O ports or be connected to other leaders via their unused
ports to provide better fault tolerance or to improve the per-
formance and reduce the diameter of Ring-CNs without in-
creasing the node degree of the network. If leader X;., con-
nects to leader ¥;.; where X; = X;.Y; = ¥; and X; = M —
Yi—1,i,j =1,2,...,1, the average distance between nodes
and, in most cases, the diameter of the network will be re-
duced. This type of Ring-CN is called Ring-CN with diam-
eter links. Varying the connectivity between leaders results
in other classes of Ring-CNss.

2.1 Rings within Basic BCNs

Let X = X;.; be a node in a Ring-BCN(/,M), where
X, €[0.M—1],X #XY fori=1,2,....,1 — 1. It can be seen
that by the definition of Ring-BCNs, nodes X, X!, X3,
...,X""1) form an /-node ring, connected through shift links.
In general, the majority of rings formed by the shift links are
of this type.

However, when [ is not a prime number, there will also
be shorter rings with /; nodes, where I divides /. For ex-
ample, let/ = 8, node X = Xg.5X4.; with Xg.5 = X4, is iden-
tical to node X(4); X thus forms a ring with nodes X (1), x(?)
and X*3). Since the addresses of shift neighbors are obtained



by performing cyclic shift on the address of a node, and
these derived neighbors form a ring, we call such networks
“ring-cyclic” networks. The rings with ! nodes are called the
cyclic-shift (CS) graphs of the BCN; the rings with [ nodes
are called the degenerate CS graphs of the BCN.

2.2 Routing and Broadcasting Algorithms

In this subsection, we present an algorithm to route a
packet from node X to node Y in a Ring-BCN(/, M) using
left- (right-) shift links and buses. We also show that broad-
casting can be performed using a similar method.

Let the addresses of nodes X and Y within the Ring-
BCN({,M) be X;., and Y., respectively, where X;,Y; €
[0,M —1].

Route(X,Y)
for i =/downto !l (ori=1tol)do
begin
Send the packet to node V; (or Y mod 1) +1)

within the nucleus in which the packet
currently resides.
If i # 1 (ori#1)then
send the packet through the left-shift
(right-shift) link.
end

It can be seen that only left-shift or right-shift operation
and nucleus transmissions suffice for packet routing in a
BCN. 1In fact, this property also holds for many other use-
ful algorithms, such as ascend/descend algorithms. As a re-
sult, we can use directed links to implement BCNs, called
directed BCNs, whose left-shift and right-shift links are im-
plemented using output and input links, respectively, in or-
der to reduce the number of off-module pins required by a
factor of 2. The routing algorithm on Ring-BCN(Z, M) re-
quires time at most Tg(l) = 21 — 1.

Broadcasting can also be performed with a simple and
fast algorithm on Ring-BCNs. To execute non-overlapping
broadcasting in optimal time, we simply replace the step
“send the packet within the nucleus” with “broadcast within
the nucleus.”

2.3 Basic Topological Properties

Let M be the number of nodes in a nucleus buslet. The
number of nodes N of a BCN(/,M) is N = M!. The level
of Ring-BCN(I, M) of N nodes is [ = %22%. The node de-
gree of a Ring-BCN(2,M) is 2, and the node degree of a
Ring-BCN(I,M) with ] > 2 is 3. The diameter of a Ring-
BCN(/,M) is obtainable from the routing algorithm given
in Subsection 2.2.

Theorem 2.1 The diameter of a Ring-BCN(1,M) is 21 —~ 1.
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Proof: It can be shown that the routing algorithm presented
in Subsection 2.2 is optimal for routing from node X =
X'X'--.X'"tonode Y = Y'Y'---Y', where X' # Y'. Thus,
e — \T—J

the tilme complexity of the algorithm provides both an up-
per bound and a lower bound for the diameter of the Ring-
BCN(I,M). i

Using proofs similar to those in [25], we can show that
any network with both the maximum number of processors
connecting to a bus and the node degree not exceeding O(M)
have diameter at least in the same order as that of a simi-
lar sized basic BCN. In other words, the diameter of a basic
BCN is asymptotically optimal.

3 Minimizing the Inter-Module Bandwidth
Requirement

The locality of data access patterns for applications and
the success of cache systems not only hide or eliminate the
network latency but also help reduce the network bandwidth
requirements (and thus inter-module traffic) in many current
parallel computers. However, with the rapid advances in
VLSI technologies, the number of processors and the com-
putation capacity (e.g., MIPS) per chip are expected to grow
significantly, making the above techniques alone inadequate
for future parallel computing environments. As a conse-
quence, the inter-module bandwidth is expected to become
one of the major constraints on the performance of parallel
computers.

In this section, we will first analyze the communication
characteristics of BCNs. We will then propose new CN
variant topologies that can take full advantage of the inter-
module bandwidth available. Compared with other popu-
lar topologies, BCNs and their variants require significantly
fewer inter-module transmissions for the same communica-
tion problems.

3.1 Communication Characteristics of BCNs

Assume that a 16-node nucleus buslet is implemented
on a single chip as the basic building module. To build
a 64K-node BCN multicomputer, 4K identical chips, each
with 32 off-chip undirected links, are employed and inter-
connected using the cyclic shift rule (Definition 2.1). To
perform packet routing for arbitrary uniformly distributed
source and destination nodes, 2.9 inter-chip transmissions
on the average and 3 inter-chip transmissions in the worst
case are required.

For comparison, consider a 64K-node hypercube multi-
computer built with 4K identical chips, each with a 16-node
4-cube and 192 off-chip undirected links, required by the
hypercube connectivity rule. To perform packet routing for
any source and destination, 12 inter-chip transmissions are
required in the worst case and 6 on the average.



For fair comparison, we assume that the off-chip band-
width per chip is the same for both cases, or equivalently,
that the bandwidth of an off-chip link for the BCN is 6 times
larger than that for the hypercube. The BCN can execute
more routing tasks by a factor of 2.1 on the average and 4
in the worse case of both systems, assuming that the inter-
chip (rather than intra-chip) bandwidth is the limiting fac-
tor. Note that the hardware costs for both systems will be ap-
proximately the same. On the other hand, this analysis also
implies that the cost for a BCN can be considerably smaller
than that of a hypercube system with similar performance.

In what follows, we will introduce CN variants that are
even more efficient in terms of inter-chip communication.

3.2 Bus-Based Quotient CNs

In this subsection, we show that a new class of
inter-processor topologies, called quotient cyclic networks
(QCNs), are highly communication-efficient. In particular,
when the source and destination nodes are uniformly dis-
tributed over the network, the required inter-chip traffic is
asymptotically optimal within a constant factor 1. Hyper-
nets and basic cyclic networks are the only known topolo-
gies that have this desirable property, but they require that
the number of processors per chip be comparable to the max-
imum number of pins per chip, which is not always possible.
QCNs are proposed mainly for this reason. This strategy can
also be applied to derive quotient hypernets to achieve simi-
lar characteristics. Note that the traffic on inter-chip links is
not uniform for hypernets; while it is uniform for QCNs and
CNs.

A QCN is obtained by “merging” several nodes within
the same nucleus in a CN; a BQCN is derived from a BCN
using the same method. For example, we can use one node
ina QCN to replace 4 Ring-CN nodes in the same nucleus so
that each node has 8 shift links connecting it to the 4 right-
and 4 left-shift neighbors of the merged nodes. The QCN
nodes in the same nucleus remain connected to a bus. In
what follows, we analyze an example of BQCN and com-
pare its inter-chip traffic requirement with a hypercube sys-
tem of the same size using the same number of processors
and pins per chip. We will focus on BQCN derived from
directed Ring-BCN in order to minimize the required inter-
chip transmissions.

Suppose that we want to build a 128K-node parallel com-
puter. Assume that a nucleus buslet or hypercube with 8 pro-
cessors can be accommodated on a single chip as the ba-
sic building module, whose maximum number of off-chip
pins for connecting links is 256. To build a 128K-node
BQCN multicomputer, 16K identical buslet chips are re-
quired. Since 16K is equal to 2'4 = 1282, a directed Ring-
BCN(3, 128) seems suitable for the network size since the
BCN has 16K nuclei in it. Since we need only 8 processors
per chip, we can view each physical processor as represen-
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tation 16 virtual nodes in the base 1283-node topology (e.g.,
by merging nodes whose first 3 bits in the 7-bit addresses
within the nucleus are the same. Since the number of re-
quired off-chip pins is 128 -2 = 256, this construction is fea-
sible under the assumption. To build a 128K-node hyper-
cube multicomputer, 16K 3-cube chips are required. Such
construction requires 224 off-chip pins (i.e., for 112 serial-
in/-out links) is also feasible under the same assumption.

To perform packet routing for any source and destina-
tion, 1.84 inter-chip transmissions on the average (for uni-
formly distributed source and destination) and 2 inter-chip
transmissions in the worst case are required in the BQCN
multicomputer; while 7 inter-chip transmissions on the av-
erage and 14 inter-chip transmissions in the worst case are
required in the hypercube multicomputer. The BCN can ex-
ecute more routing tasks by an average factor of 3.8 and
by a factor of 7 in the worse case of both systems, assum-
ing that the inter-chip bandwidth, rather than the intra-chip
bandwidth, is the limiting factor.

Note that BQCNs can use more processors per chip in
order to obtain larger peak MIPS (or FLOPs) and to ob-
tain larger processor-to-memory bandwidth per chip if the
VLSI area per chip permits; while hypercubes cannot since
the number of pins required per chip will exceed its limit.
Also note that if the number of available pins per chip can be
significantly increased as conjectured by the SIA projection
{22], the superiority of BQCN over hypercube can be even
more pronounced. Since the diameter of a 16K-node net-
work with in-/out-degree 128 can be shown to be at least 2, it
can be shown using similar proof that the required inter-chip
traffic (in the worst case) for routing in the above BQCN is
strictly optimal. Note that the average case is also close to
optimal since 1.84 is close to the minimum possible average
distance in such a 128K-node network. We formally present
the result in the following lemma.

Lemma 3.1 The average number of inter-nucleus transmis-
sions required for routing in an N-node BQCN is logpN +
o(logp N), assuming uniformly distributed source and des-
tination nodes, where P is the number of links per nucleus
module.

The technique used to derive QCNs from CNs (i.e., merg-
ing several appropriate nodes into one) can be applied to
other networks, such as hypercubes, star graphs, CCC and
SCC, in order to fully utilize the pins available, if the num-
ber of processors per chip is limited by area rather than by
pin count. To eliminate the “number of parts” problem, we
assume that a parallel system uses at most several types of
modules as building blocks, and one or several cycles in
the CCC or SCC can be built on the same module. Then,
the average numbers of inter-module transmissions required
for routing in N-node (quotient) hypercubes and (quotient)
star graphs will be approximately %logzN — %logzP and
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formly distributed source and destination nodes, where P is

the number of links per module and P > ,0;(:’%;;: ~ (so that at
least one node in the N-node hypercube or star graph can be
put'onto a module). The corresponding parameters of (quo-
tient) CCC and (quotient) SCC are close to those of similar-
sized hypercubes and star graphs, respectively, when P is
large. Ttis clear that BQCUNs outperform the above networks
and their quotient variants under this criterion.

Note that these desirable properties of BCNs and BQCNs
can also be extended to the case when a nucleus is built
with several chips. This is in fact another advantage of bus-
based CNs since only one off-chip transmission is required
for routing in a multi-chip buslet. In addition to their min-
imal inter-nucleus traffic, the off-chip bandwidth of BCNs
and BQCNSs can therefore be fully utilized. Similarly, if we
replace the cycle in a SCC with a buslet, the off-chip band-
width utilization can be improved in this case as well.

- logP), respectively, assuming uni-

4 Enhanced BCNs and Variant Topologies

In this section, we present the constructions and prop-
erties of enhanced CNs, which can be generalized from
the definition of basic CNs. Enhanced CNs have the ad-
vantage of better emulation capability compared with ba-
sic CNs. They have performance comparable to that of
swapped networks and have choices of degrees more flex-
ible than those of swapped networks [24, 25]. We will then
define some subclasses of enhanced BCNs and explore their
specific properties.

An [-level CN based on G, CN(/,G), is obtained by re-
moving all shift links (rings) from a Ring-CN(/,G) and re-
connecting nodes X, XV, X xU=1)in some other way.
The new links used between nodes X, X! x(2)  x(-D
have to form a connected graph (or hypergraph), for each
node X in the CN. If X\ £ XU) for i # j, where i, =
0.1,2,....]1 — 1, the resultant connected graph is called the
CS8 (cyclic-shift) graph; otherwise, it is called the degener-
ate CS graph. Note that there may be muitiple links connect-
ing two nodes in a degenerate CS graph. A CN using Gy as
its CS graphs is called G¢s-cyclic network and denoted by
Ges-CN.

4.1 Complete-BCNs

Complete-BCNs are obtained by replacing the rings in
Ring-BCNs with complete graphs, as the (degenerate) CS
graphs of the Complete-BCNs. Although the node degrees
of Complete-BCNs are increased, they can emulate many
networks efficiently. We formaily define them as follows.

Definition 4.1 ( Complete-CN(/.G)): Let the nucleus net-
work be G = (V. E¢). Anl-level complete-cyclic network
based on the nucleus G is defined as the graph Complete-
CN(/,G) = (V,E), where V = {V, |V, € V;,i = 1...,1,}
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Figure 2. Structure of an n-dimensional SB-
SE module and its off-module connections,
where X0 £ xU) for i# j, 0<ij<n—1 and
X= Xp—1Xp=2" " X1X0-

is the set of vertices, and £ = {(U.;,V;.))|U;,Vi € V,i =
1,2,....1, satisfying U = Vjp and (U[,Vl) € Zg, orV,, =

U,(:"l.), for some integer j,1 < j < I} is the set of edges.

Note that the above definition implies the existence of
multiple links and self loops in the degenerate CS graphs.

An l-level Complete-BCN is obtained by replacing the
nucleus G with an M-node buslet. It can be seen that
the Ring-BCN(/, M) is a subgraph of Complete-BCN(I, M)
since aring is a subgraph of a complete graph. A Complete-
BCN(/,M) has the same size and diameter as a Ring-
BCN(/,M). but it has a larger node degree /.

Emulation of an /-dimensional base-M generalized hy-
percube [4, 16] on a Complete-BCN(/,M) is simple and
fast. For example, to emulate the transmission from node
X4X3X>X| to node X4X;X,X; in a 4-dimensional general-
ized hypercube, we first send the packet from node X =
X4X3X>X, to node X3 = X2XX4X3 using the appropriate
inter-nucleus link, then to node X' = X>X,X4X} within the
nucleus, and finally to node X"(?) = X4X3X-X, using the ap-
propriate inter-nucleus link. The result is formalized in the
following theorem.

Theorem 4.1 A Complete-BCN(I,M) can emulate an I-
dimensional base-M generalized hypercube with dilation of
at most 3.

4.2 Segmented-Bus-CNs

Although Complete-BCNs can emulate generalized hy-
percubes efficiently, their node degrees grow with /. A
more cost-effective enhanced CN is to replace the rings in
Ring-CNs with segmented buses [20], which results in a
Segmented-Bus-CN (SB-CN). The main reason we are us-
ing such segmented buses is that they can emulate rings
without slowdown, thus supporting emulation of the Ring-
CN and efficient routing scheme.

An SB-BCN(I/,M) can embed an /-dimensional base-M
generalized hypercube of the same size with dilation 3. Note



that the node degree of such an embedded generalized hy-
percube is /M while that of the SB-BCN is 2.

An attractive SB-CN subclass results if we choose the
nucleus to be an edge (i.e., a 1-cube). This results in a
SB-CN(/, ;) which can also be called /-dimensional SB-
shuffle-exchange (SB-SE) network (see Fig. 2). To imple-
ment an SB-SE, we can put each CS graph (or a couple of
them if they are small), which is a segmented buslet, onto
a chip (or a module), where each node has at most one off-
chip (or off-module) link connecting it to its nucleus neigh-
bor. Such an arrangement requires only short segmented
buses and one off-module link per node, leading to lower im-
plementation cost. Note that the default implementation of
other classes of CNis is to put a nucleus onto a single module.

4.3 Incomplete BCNs

To obtain variants of BCNs with smaller step-size, we
can use M;M'~! rather than M’ nodes to construct /-level in-
complete BCNs, where M; divides M, the number of nodes
in a nucleus. A node X = X;X;_,.; in the incomplete vari-
ant is assigned a pseudo-address X = X/X; |.; such that X/
ranges from 0 to M — | (rather than 0 to M; — 1 for X;).
For example, node X;X; .| is assigned X/X; |, with X/ =
XoM; + X;, where X; = XpM; + Xz, and Xy, Xy are posi-
tive integers with Xg < M;. Given the pseudo-address, we
can then construct incomplete BCNs using previous defini-
tions. Most results derived in this paper can be applied to
such BCN variants either directly or with minor modifica-
tions,

4.4 Recursive BCNs

Another way to obtain a CN is to recursively construct
the CN based on smaller CNs (e.g., Ring-BCN, Complete-
BCN) as the nuclet. The formal definition is given as fol-
lows.

Definition 4.2 (Recursive-CN(/,,/, . (,....,{,,G)) For r >
1, an r-deep recursive-CN(l,, I, y,....,1;,G) is recursively
defined as CN(l,, recursive-CN(l,_y.l,_1.....1,,G)), with
recursive-CN(1;,G) = CN(l,.G).

Most algorithms developed for BCNs can be recursively
applied to recursive BCNs with minor modifications.

We have introduced several classes of BCNs and briefly
shown their advantages. We can use the techniques intro-
duced in [24] to transform the constructions of BCNs in or-
der to obtain regular and symmetric variants. We can also
obtain unfolded variants of CNs by using the techniques
given in [24].

5 Cost-Performance Comparisons

In this section, we compare the hardware costs and net-
work delays of BCNs with those of several other intercon-
nection networks.
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Figure 3. The normalized hardware cost, de-
fined as the ratio of hardware cost over net-
work size, for several interconnection net-
works.

An important advantage of BCNs, hypernets, and WK-
recursive networks is that they can be hierarchically con-
structed using identical modules, with a fixed number of O
ports independent of the network size. Each node in a hy-
pernet or a WK-recursive network requires one external /O
port, and each node in a Ring-BCN requires one or two ex-
ternal /O ports, connecting it to nodes in other modules. On
the contrary, the number of required external 1/O ports per
node in the hypercube, folded hypercube, star graph, HCN,
HEN, RCC or SN increases with the network size.

When interconnection networks grow very large, pin lim-
itations become a major constraint in their VLSI implemen-
tation [3, 6, 12, 13]. In what follows, we compare the re-
quired total counts of PC boards and inter-board connectors
for the implementation of BCNs and hypercubes. The anal-
ysis and assumptions are similar to those given in [10, 11,
12, 14]. We assume that a multiprocessor system is built in-
crementally using VLSI chips and PC boards. A chip can
house many processors, and a PC board houses many of
these chips. A chip is mainly constrained by technology in
terms of the number of processors that can be packed onto it,
and the number of its I/O pins. A PC board is mainly con-
strained by the number of chips that can be housed within
a board and the number of /O ports per board. Suppose
we want to build a multiprocessor system with 32K proces-
sors, using an 8-node buslet or 3-cube as the basic mod-
ule within a chip. In view of current technology, the fol-
lowing limits are assumed: (1) maximum 1/Q pins per chip
= 256 (pin-limited), (2) maximum chips per board = 256
(area-limited), (3) maximum I/O ports per board = 2400
(connector-limited). Under the above limitations, an 8-node
buslet or 3-cube with at most 16 inter-module links per node
(each having two I/O pins, namely serial-in and serial-out),
can be implemented on a single chip. A 7-cube can be ac-
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Figure 4. The network delays of several inter-
connection networks.

commodated on a board in order to meet the /O connector
limit. Thus, 256 PC boards are required to implement a 15-
cube. To optimize the performance and minimize the hard-
ware cost of the desired BCN, we first construct two Ring-
BCN(3,8) on a board. To implement a 32K-node BCN, we
use 64 of the above Ring-BCNs to construct a 2-level in-
complete CN. As a consequence, 32 PC boards are required
for the incomplete CN(2,BCN(3,8)}). The total number of
boards and inter-board connectors required for the hyper-
cube are 8 times those for the BCN.

The actual cost of a parallel architecture is known only af-
ter'detailed designs for the various components are available
and VLSI layout is attempted. However, there are simpie
rules of thumb, resulting from years of implementation ex-
perience, that can lead to reasonable preliminary estimates
for comparison purposes. To provide such a comparison
of the implementation costs of hypercube and BCN paral-
lel systems of the same size, we assume that the costs of a
board, a chip, and a connector are 100, 10, and 1, respec-
tively [11, 12]. Under these assumptions, in the above ex-
ample, the hardware cost for the hypercube is approximately
3.3 times that of the BCN. To compare the network delay, we
assume that the delays associated with transporting a packet
through an inter-board link, an inter-module link, and an
intra-chip link are 8, 4, and 1, respectively [11, 12]. Un-
der this assumption, the network delays for the hypercube
and the BCN are 83 and 25, respectively. A packet in the
BCN will go through an inter-board link and an inter-module
link at most one and three times, respectively, along a short-
est path. As a result, the product of hardware cost and net-
work delay for the hypercube will be approximately 11 times
larger than that of the BCN.

Note that the comparison given in [ 14] uses S-cube and 3-
cube as basic modules to build 64K-node hypernet and hy-
percube, respectively, and the comparison in [11, 12] uses
5-cube and 2-cube as basic modules to construct 1024K-
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Figure 5. The product of normalized hardware
cost and network delay for several intercon-
nection networks.

node RCC and hypercube, respectively. If we use as-
sumptions identical to those used in [11, 12, 14] (that is,
the chip area limit allows a maximum of 32 processors
per chip), we can use chips each with a 32-node buslet
to build an 32K-node 2-deep incomplete recursive CN,
incomplete CN(2,BCN(2,32)), which has smaller hard-
ware cost and network delay than the previous incom-
plete CN(2,BCN(3,8)). The hardware cost of the 32K-
node hypercube will be larger than the resultant incomplete
CN(2,BCN(2,32)) by a factor of approximately 6.7, the
network delay for the incomplete CN(2,BCN(2,32)) will
be reduced to 15, and thus the product of hardware cost and
network delay for the hypercube will be approximately 37
times larger than that of the incomplete CN(2, BCN(2,32)).
The product of hardware cost and average delay for the hy-
percube is approximately 18 times larger. Note that the 15-
dimensional hypercube cannot use a small hypercube with
dimension larger than 3 within a basic VLSI module since
the required number of pins per chip will exceed its limits.
Note also that when the network size is increased, the differ-
ences of these parameters will be even more pronounced.

In Figs. 3.4, and 5, we compare the normalized hardware
cost, network delay, and their product for several intercon-
nection architectures using assumptions identical to those
used in [11, 12]. Note that some of the Ring-BCN(/,32)
and Recursive CN(/5,BCN(/,,32)) in these figures are con-
structed as their incomplete variants. Also note that all
nodes belonging to the same cluster in a network are kept
as physically close as possible. It is clear that BCNs outper-
form the torus, hypercube, folded hypercube, star graph, and
CCC on this hardware cost x delay measure. Note that if we
assume the all-port communication model, the performance
of these hypercubes, folded hypercubes, and star graphs may
be comparable to or somewhat better than that of the BCNs.
However, the BCNs still compare favorably with the above



networks in terms of the product of hardware cost and net-
work performance.

6 Conclusion

In this paper, we have proposed BCNs and BQCNs as a
new family of paralle! interconnection architectures. BCNs
and BQCNs not only combine some desirable properties
of both the hypercube (e.g., a wealth of fast, elegant algo-
rithms) and the star graph (e.g., small diameter), but also use
nodes of small degree, making them less expensive to imple-
ment and easier to expand. We presented simple and effi-
cient routing and broadcasting algorithms on BCNs. More-
over, we showed that BCNs and BQCNs s are particularly ef-
ficient in view of their inter-module communication band-
width requirements.

We also compared the hardware costs and network delays
of BCNs with some competing networks. VLSI implemen-
tation and packaging constraints are quite pragmatic and do
not lend themselves to a general treatment and universal
conclusions. We do hope, however, that our examples and
associated quantitative estimates have convinced the reader
that BCNs are attractive candidates for high-performance
parallel processing at reasonable cost.
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