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Abstract

The camera response function (CRF) that maps linear
irradiance to pixel intensities must be known for computa-
tional imaging applications that match features in images
with different exposures. This function is scene dependent
and is dif�cult to estimate in scenes with signi�cant mo-
tion. In this paper, we present a novel algorithm for ra-
diometric calibration from multiple exposure images of a
dynamic scene. Our approach is based on two key ideas
from the literature: (1) intensity mapping functions which
map pixel values in one image to the other without the need
for pixel correspondences, and (2) a rank minimization al-
gorithm for radiometric calibration. Although each method
has its problems, we show how to combine them in a formu-
lation that leverages their bene�ts. Our algorithm recovers
the CRFs for dynamic scenes better than previous methods,
and we show how it can be applied to existing algorithms
such as those for high-dynamic range imaging to improve
their results.

1. Introduction

Many algorithms in computational photography and
computer vision need to combine information from several
images of the same scene (e.g., high-dynamic range (HDR)
imaging, panorama stitching, 3D structure-from-motion).
In some cases the images must be taken at different expo-
sures, so to match features across images these algorithms
often assume that pixel intensity values are linearly related
to scene radiance. However, this assumption is violated by
the non-linear camera response function (CRF) added by
camera manufacturers. This CRF is applied to sensor irra-
diance measurements to compress the dynamic range of the
sensor irradiance and make the �nal images more visually
pleasing.

If this non-linearity is not accounted for, errors could
occur when matching across images with different expo-
sures. However, the CRFs are generally unknown, consid-
ered trade secrets by camera manufacturers. Furthermore,
they can be scene dependent [2, 9, 13] making their esti-

mation more dif�cult. Henceradiometric calibration, the
process of inverting the CRF to bring values to the linear
irradiance domain, is a crucial �rst step for any algorithm
working with images at different exposures.

There have been many different radiometric calibration
approaches proposed for the past 20 years, starting with the
seminal works of Mann and Picard [19] and Debevec and
Malik [4]. However, most of these approaches assume static
scenes and tripod-mounted cameras, which is not the typ-
ical scenario for casual photographers. Some researchers
have proposed methods that attempt to recover the CRF for
dynamic scenes, but they fail in the presence of signi�cant
scene motion, signi�cant noise, motion blur, and different
defocus blur across images. Since highly dynamic scenes
are ubiquitous in our world, the problem of automatic ra-
diometric calibration is an open and important problem in
computational imaging.

In this paper, we present a new radiometric calibration
algorithm speci�cally designed to handle scenes with sig-
ni�cant motion. To do this, we build upon two key ideas
from the literature. First, is the concept of intensity mapping
functions (IMFs) proposed by Grossberg and Nayar [7],
which directly map pixel values in one exposure to another
by transforming their histograms. They observed that IMFs
can handle small motion because they do not require �nding
correspondences between images, which can be brittle and
error-prone. However, their method for computing IMFs
could not handle large scene motions because the histogram
of the scene radiances changes. Therefore, we present a new
RANSAC-based algorithm for computing IMFs that is more
robust to large motions.

Furthermore, Grossberg and Nayar's method used a
least-squares optimization which easily over�ts to noisy
IMF estimates, resulting in incorrect CRFs. To address
this problem, we leverage a second key idea: the rank-
minimization algorithm for radiometric calibration of Lee
et al. [15]. This algorithm avoids over�tting and presents a
principled approach for radiometric calibration. However,
Lee et al. used pixel-wise correspondences in their opti-
mization which results in artifacts for scenes with signi�-
cant motion. We address this problem by reformulating the



rank minimization approach to handle IMFs.
By combining the two methods, our approach capitalizes

on their bene�ts. This results in a method that is very sta-
ble, avoids over�tting, and is also robust to inaccuracies in
IMF estimation. Furthermore, it allows the recovery of re-
sponse functions up to an exponential ambiguity even when
no information is available about the exposure values. We
demonstrate that our algorithm can estimate the CRFs from
a stack of images of a dynamic scene more accurately than
existing methods. Furthermore, we show how it can be used
in practice by using it to improve the quality of state-of-the-
art HDR reconstruction algorithms.

2. Previous Work

Radiometric calibration is usually performed using mul-
tiple aligned images of a static scene taken at known ex-
posures with a �xed camera. The early methods mostly dif-
fered in how they represented and solved for the CRF. Mann
and Picard [19], for example, used a gamma-correcting
function to represent the CRF, while Debevec and Malik [4]
used a nonparametric smooth mapping of image irradiance
to intensity. Mitsunaga and Nayar [21] solved for the CRF
using a high-order polynomial representation, while Gross-
berg and Nayar [8] leveraged a database of response func-
tions to represent the CRF. All of these approaches assume
that the scene is static and the camera is tripod-mounted.

There are a few prior approaches that allow some cam-
era movement or small scene motion. Mann and Mann [20]
proposed a method that allows camera rotations and simul-
taneously estimates the CRF and exposure ratios, but it does
not work for general motion. As described earlier, Gross-
berg and Nayar [7] proposed to estimate the CRF by solving
a least-squares optimization after recovering the intensity
mapping functions between image pairs using histogram
speci�cation. Their IMFs allow for small scene motion, im-
age noise, and blur as long as the histogram of scene radi-
ance does not change much. We extend their approach by
proposing a new way to compute IMFs that is more robust
to large scene motions.

Kim and Pollefeys's method [14] allows for free cam-
era movement and some scene motion by computing IMFs
using dynamic programming to �nd maximal values on the
joint histogram built from correspondences. However, this
approach cannot handle noisy observations that are com-
mon in real applications. Methods have also been proposed
that estimate the CRF from a single image [17, 18], but they
are usually not very robust because they rely strongly on
edge information, which can be noisy and is often affected
by post-processing in the imaging pipeline.

Finally, Lee et al. [15, 16] introduced a clever radiomet-
ric calibration approach that leverages the low-rank struc-
ture of sensor irradiances and uses rank minimization to re-
cover the response function. Their basic observation is that

the ideal inverse CRF would map the input images to the
image irradiance domain where the values between two im-
ages would differ by a single scale factor (the exposure ra-
tio). If these irradiance images are placed into the columns
of an observation matrix, this matrix would be rank-one
since every successive column is linearly dependent on the
�rst. By solving for the inverse CRF which minimizes the
rank of the observation matrix, they avoid the problems with
over�tting which affect least-square algorithms. Further-
more, in absence of exposure ratios, they can recover the
camera response function up to an exponential ambiguity,
which is useful in radiometric alignment applications.

However, Lee et al. use pixel-wise correspondences
to �nd matching intensity values in the different images,
which can be prone to error when the scene motion is large
or complex. To address this problem, we reformulate the
rank-minimization algorithm to leverage IMFs in the op-
timization directly, allowing it to handle highly dynamic
scenes. This results in an algorithm that is more robust to
scene motion, camera noise, and image blur than existing
methods.

3. Proposed Algorithm

We begin by giving an overview of radiometric calibra-
tion algorithms such as ours. Suppose we take two images
of a static scene with different exposures by setting the shut-
ter times tot1 andt2. Let z1 be the image intensity mea-
surement (pixel value) of a point with image irradiance1 e1

in the �rst image, whilez2 ande2 are the corresponding val-
ues of the same pixel in the second image. Assume that all
intensity and irradiance values are normalized [0, 1]. The
exposure ratio between the two images can be expressed
as k2;1 = t1=t2 = e1=e2. If f is the camera response
function that maps linear irradiance to pixel values (e.g.,
f (e1) = z1 and f (e2) = z2), the goal of this work is to
�nd the inverse camera response functiong = f � 1, where
in this caseg(z1) = e1 andg(z2) = e2. Using the fact that
e1 = k2;1 e2, we substitute ing to get:

g(z1) = k2;1 g(z2): (1)

Let � 1;2 be a function which relates the intensity values of
the �rst image to that of the second, such thatz2 = � 1;2(z1).
In a general sense, this can be done in many ways such as
through pixel correspondences (e.g., optical �ow), but in
this work we propose to use intensity mapping functions

1In our paper we call the RAW image value at the photo sensor as
the linear irradiance value. Technically, the RAW image value is linearly
proportional to the amount of light energy collected at the photo sensor.
If we assume the irradiance to be constant over the pixel footprint and
shutter integration time then the light energy is linearly proportional to the
irradiance at a pixel. Hence, the RAW image value is often simply called
as image irradiance value [7, 13, 16, 15]. Although this does not hold when
there is a motion blur we stick with this notation in our paper.



(IMFs). Assume for now that the IMF is provided to us,
although we show later in Sec. 3.2 how to estimate it from
the input images. Substituting this into Eq. 1 gives us:

g(z1) = k2;1 g(� 1;2(z1)) : (2)

Let us create a vectorB1 = [ b1 b2 � � � bj � � � bK ]T that
contains theK unique intensity values in the �rst image
such thatbj and� 1;2 (bj ) follow the constraints0 < b j < 1
and0 < � 1;2 (bj ) < 1. We could then �ndg by solving the
following least squares optimization, as done in previous
approaches [7]:

ĝ = arg min
g

KX

j =1

[g(bj ) � k2;1 g(� 1;2(bj ))]2: (3)

The problem with this least squares optimization is that it
can over�t the data and can lead to bad estimates ofg, as
we will see in Sec. 4. Therefore, we propose instead to use
the IMF in a new optimization framework based on the rank
minimization work of Lee et al. [15], presented next.

3.1. Our Proposed Rank Minimization Framework

We begin by explaining the basic method of Lee et
al. [16, 15]. First, we de�ne a two-columnobservationma-
trix D1 2 RK � 2 as

D1 = [ B1 j � 1;2 � B1]; (4)

where� is an element wise operator. Note that in Lee et
al.'s work the function� 1;2 comes from pixel-wise corre-
spondences, while in ours it is the IMF. We then construct
matrix P = g � D1 = [ g � B1 j g � � 1;2 � B1], which
if g is correct will be a rank-one matrix because by Eq. 2
the second column is a multiplek2;1 of the �rst. Using this
property, we can solve for the camera response functiong
by minimizing the following energy function:

ĝ = arg min
g

"

rank(g � D1)+ �
X

t

H
�

�
@g(t)
@B

� #

; (5)

whereH (�) is the Heaviside step function, i.e.,H (x) =
1 whenx � 0 andH (x) = 0 whenx < 0 andB is a vector
that contains all the valid intensity values. Here, the �rst
term minimizes the rank ofP while the second term forces
the CRF to be monotonically increasing by penalizing solu-
tions with negative gradients.

Eq. 5 estimates the inverse camera response function us-
ing a single IMF between a pair of images in a rank mini-
mization framework, but in practice we usually have more
than two images with different exposures. Therefore, we
need to extend it to include all pairwise IMFs between the
adjacent images. This will improve our estimate in two crit-
ical ways. First, each IMF contains mapping information

of the intensity values found in only one pair of images,
which might not represent the entire range of possible pixel
values. By using all the IMFs together we can recoverg
for a larger range of intensity values. Second, images with
different exposures usually have signi�cant overlap in their
intensity values, so including them in the observation matrix
D1 improves the robustness of our estimate to noise.

To explain how we do this, we show the process of ex-
tending Eq. 5 using three images and generalize it toN im-
ages later. This extension can be simply done by including
the corresponding two IMFs between the adjacent images
in the observation matrixD1 as follows,

D1 = [ ~B1 j � 1;2 � ~B1 j � 2;3 � � 1;2 � ~B1];

where ~B1 is a vector containing a subset of values from vec-
tor B1, s.t., none of the values inD1 de�ned above are satu-
rated, since saturated values break our low-rank assumption
because they are no longer linearly related. For the case
with N images, we could generate anN -column matrixD1

where itsj + 1 th column is computed by applying� j;j +1 to
thej th column.

Using all pairwise intensity mapping functions for con-
structing observation matrixD1 could potentially improve
the robustness by utilizing the overlap between different im-
ages. However, the number of intensity values in vector
~B1 that remain non-saturated after successive application of
pairwise IMFs will be greatly reduced and could negatively
affect the accuracy of the estimation. In the limit, if the
range of exposures in the images is great enough, no pixels
would exist that would be unsaturated through out the entire
range and so the size of~B1 would be effectively zero.

To address this problem we make two key observations.
The �rst is that each speci�c image has considerable over-
lap with only a few adjacent images in the exposure stack.
Therefore, by using only these neighboring images in the
observation matrix we can robustly estimate the camera re-
sponse functiong for the range of intensities covered by that
image. Therefore, we propose to divide all the images into
overlapping groups of sizem (i.e., m � 1 pairwise IMFs)
and construct an observation matrixD i for each group. This
allows us to use all available IMFs to improve the robust-
ness of our estimation while avoiding the problem of sig-
ni�cant reduction of valid intensity values in~B1. Formally,
we create a set ofN � m+1 observation matrices as follows,

D i = [ d0 j d1 j � � � j dm � 1 ];

d0 = ~B i dj = � i + j � 1;i + j � dj � 1:

In our implementation, we selectm to be as large as pos-
sible such that~B i has at least 20 quantization levels, which
is usually around 3 images. Note that this is in contrast to
Lee et al.'s method [15], where only a single subset of all
the images is used to construct the observation matrix.



Our second key observation is that since the intensity
mapping functions are non-linear in nature, uniform quanti-
zation of one domain causes highly non-uniform sampling
in some parts of the function. To address this discretiza-
tion problem, we propose to construct aninverseobserva-
tion matrixD 0

i corresponding to eachD i as follows,

D 0
i = [ d0

0 j d0
1 j � � � j d0

m � 1 ];

d0
m � 1 = ~B i + m � 1 d0

j � 1 = � � 1
i + j � 1;i + j � d0

j ;

where� � 1
i;i +1 is the inverse intensity mapping function that

maps the intensity values in thei + 1 th image to thei th im-
age. We combine these two observations into a new energy
function which robustly estimates the inverse CRF:

ĝ = arg min
g

N � m +1X

i =1

�
rank(g � D i ) + rank(g � D 0

i )
�

+ �
X

t

H

 

�
@g(t)
@B

!

(6)

In summary, the optimization problem we proposed differs
from Lee et al.'s method [15] in two important ways:

� Instead of using pixel correspondences, we propose
the use of IMFs to construct the observation matrix
D i . Not only are IMFs more robust to motion than
pixel correspondences, but they are also a very com-
pact representation (Lee et al. need thousands of pixel
correspondences to construct their observation matrix,
whereas the intensity values in our matrices are often
less than 256). This makes our optimization step much
faster as well.

� Instead of selecting a single subset of images to con-
struct one observation matrix and solving forg to lin-
earize it, we propose to compute multipleD i andD 0

i
observation matrices, and solve forg to linearize them
all together. As we shall see in Sec. 4, this makes our
estimation more robust and improves its performance
on average.

3.1.1 Solving the optimization problem

The objective function in Eq. 6 can be solved using standard
optimization techniques. We use the Levenberg-Marquardt
method in our experiments. While the intensity mapping
function estimated by our approach gives a reasonably good
approximation, to further improve the robustness and ac-
curacy of our approach we adopted the outliers rejection
method proposed by Lee et al. [15]. Please refer to our sup-
plementary material for further details.

Finally, instead of minimizing the rank of a matrix in our
optimization problem, we minimize the second condition

number of a matrix, as proposed by Lee et al. [15, 16]. We
use a parametric form forg given bynth degree polynomial
function as shown below.

g(b) = b+ b(b� 1)
n � 2X

i =0

ci bi

The polynomial function de�ned this way hasn � 1 de-
grees of freedom and follows the constraintsg(0) = 0 and
g(1) = 1 . Experimentally, we foundn = 6 to be a good
choice as shown in Sec. 4.3.

3.1.2 Exponential ambiguity

The solution to Eq. 6 recovers the response function up to an
exponential ambiguity. This means that ifĝ is a solution to
Eq. 6 such that rank(ĝ � D i ) = 1 , thenĝ is also a solution.
For example, ifĝ � B1 = x and ĝ � � 12 � B1 = k2;1x,
thenĝ � B1 = x  andĝ � � 12 � B1 = k

2;1x  are still
linearly related, albeit with a different ratio. Therefore, the
observation matrix still has rank of one.

This corroborates the observation of Grossberg and Na-
yar [7], who found it was impossible to recover the ex-
posure ratio and inverse response simultaneously from the
IMF without making a prior assumption on either one �rst.
In our case, if the exposure ratios are unknown we cannot
use the inverse CRF to recover the actual radiance values,
but it is still very useful for radiometric alignment applica-
tions like high-dynamic range imaging where we can relax
the need to know exposure values (see Sec. 5). Furthermore,
if the exposure ratios are available we can resolve the expo-
nential ambiguity and recover the inverse CRF through the
following least squares problem:

̂ = arg min


X

i

X

j

[ĝ (bj ) � ki +1 ;i ĝ (� i;i +1 (bj ))]2 (7)

In our work, we used Levenberg-Marquardt method to solve
this optimization problem. Once we have estimated̂ , the
inverse camera response function is given byĝ(�) ̂ .

3.2. Intensity Mapping Functions

We now return to the problem of computing the inten-
sity mapping functions between input images. To do this,
there are two general approaches. The �rst computes the
IMF using the joint histogram of two images. These meth-
ods �rst aggregate the intensity values of the correspond-
ing pixels in the two images into a joint image histogram.
Then, they estimate the intensity mapping function using
regression methods or some kind of �tting (e.g., dynamic
programming [14]) over the intensity pairs in the joint his-
togram. Although these approaches can sometimes handle
object motion using an appropriate outliers rejection tech-
nique, they are not robust and fail to estimate the inten-
sity mapping function in presence of highly dynamic scene,



noise, motion blur, and different defocus blur across im-
ages.

On the other hand, Grossberg and Nayar [7] proposed
an alternative approach for estimating IMF using 1D his-
tograms of the two images without the need for pixel cor-
respondences. They showed that if the histograms of scene
radiance in two images are similar, the IMF can be com-
puted using the histogram speci�cation between the two 1D
histograms. This approach can faithfully recover the IMF
in presence of small scene motions, image noise, and blur
since they do not change the histogram of scene radiances
signi�cantly. However, in case of large motion, the his-
tograms of scene radiance change signi�cantly and hence
this method fails to accurately estimate the IMF. Since this
approach only uses 1D image histograms detecting the large
motion using outliers rejection techniques is dif�cult.

In order to reliably estimate the IMF in all cases (includ-
ing large and small motion and in presence of signi�cant
image blur and noise) we propose a novel hybrid approach
that utilizes these two methods to avoid their problems. In
our system, we �rst detect the large motions in a joint his-
togram generated from pixel correspondences between two
images. Once these pixels are identi�ed, we exclude them
and accurately estimate the IMF using histogram speci�ca-
tion which is robust to remaining small motions, noise, and
blur.

Our proposed approach has the following three steps to
estimate an intensity mapping function,� i;j , between a pair
of images:
1) Remove camera motion:We perform the rough regis-
tration of the images using a global homography computed
with RANSAC [5] from sparse SURF keypoint matches [1].
2) Remove outliers due to large motions:First, we con-
struct a joint histogramJ ij (bx ; by ) for the two globally
aligned images using the intensity pairs(I i (p); I j (p)) . We
then �nd the maximum mode of data corresponding to each
bin bx in the joint histogramJ ij (bx ; by ). This is done by
performing mean shift clustering [3] over the intensity val-
ues of all the pixels in imageI j that contribute to the bin
bx in the joint histogram and selecting the maximum mode.
We empirically found that using a �xed kernel bandwidth of
0:15for mean shift clustering provides the best performance
and used it in all of our experiments.

Since large motions are infrequent, most of these modes
are expected to lie close to the ground truth IMF and only
a few corresponding to the large motions are outliers. In-
spired by Hu et al. [10], we detect the inlier modes by �t-
ting cubic Hermite splines in a RANSAC framework. In
each RANSAC iteration, we select the control points for the
Hermite splines and �nd the inlier percentage. We select
one to four control points depending on the range of bins
spanned by the valid mode points in the joint histogram. In
addition to this we select two control points at(0; 0) and

(1; 1). In each RANSAC iteration, we select control points
such that they are monotonic and well separated from each
other. If these conditions are satis�ed we �t cubic Hermite
splines and calculate the inlier modes percentage. Once we
have �t a model using cubic Hermite splines, we �nd all the
pixel correspondences in imageI i andI j whose intensity
pair (I i (p); I j (p)) lie inside a �xed threshold� (0:05 in our
implementation) from the model. Please refer to [10] for
more details on this. The cubic Hermite splines �t is used
just to remove the pixel correspondences, whose intensity
pair could be large outliers to the ground truth IMF. We re-
move these outlier pixel correspondences from the images
and proceed to next step.

3) Compute the �nal IMF: The joint histogram computed
using these inlier pixel correspondences can still be very
noisy due image noise, blur, small mismatches, etc. Hence,
we use histogram speci�cation, as proposed by Grossberg
and Nayar [7], to compute the �nal IMF.

We have tested the above approach to compute the IMF
on many image pairs and found it to be very robust even
in complex scenarios. We compute the intensity mapping
functions between adjacent image pairs and use them in our
optimization framework (Sec. 3.1) to recover the inverse
camera response function.

4. Experiments

We implemented our algorithm in MATLAB and show
the performance of our approach through extensive exper-
iments on both synthetic and real world images. We com-
pare against the radiometric calibration algorithms by Lee
et al. [15], Grossberg and Nayar [7], and Mitsunaga and
Nayar [21]. We use the Lee et al.'s [15] implementation
for both their method and Mitsunaga and Nayar's approach,
and use our own implementation of the method of Gross-
berg and Nayar. Since Lee et al.'s and Mitsunaga and Na-
yar's methods work with pixel correspondences, we com-
pute the inverse camera response function using 1,000 ran-
domly selected samples. We repeat this process �ve times
and use the median of the �ve computed CRFs in our com-
parisons.

Although the focus of our approach is handling large mo-
tions, we �rst evaluate our performance in handling image
noise on the synthetic dataset by Lee et al. [16]. We demon-
strate similar performance in comparison with the state-of-
the-art approach by Lee et al. [15]. We then show that our
method produces signi�cantly better results than the other
approaches on real world images with large motions. Fi-
nally, we evaluate the importance of different components
in our method through extensive analysis.
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Figure 1. Cumulative histogram of number of successful cases
w.r.t. RMSE for the entire synthetic dataset. Larger values shows
better performance. Our method has similar performance to the
Lee et al.'s method [15] in handling image noise, despite the fact
that the focus of the paper is handling large motions.

4.1. Simulations on synthetic dataset

We synthetically generated scene radiances in the range
of [0; 1] with four different distributions (see supplemen-
tary material), as proposed by Lee et al. [16]. For each
distribution, we produced �ve one dimensional irradiance
images of size100; 000 with exposure times of step 0.5
(0.0625, 0.125, 0.25, 0.5, 1). We then added Gaussian noise
with �ve different standard deviations (0, 0.0025, 0.0050,
0.0075, 0.0100) to each images resulting in4� 5 = 20 irra-
diance image stacks. Finally, we applied 201 camera curves
from the DoRF database [8] and quantized the images to
256 levels to produce20 � 201 = 4020synthetically gen-
erated multiple exposure image stacks.

We demonstrate the overall performance of our approach
in comparison against other methods in Fig. 1. We calcu-
late the root mean squared error (RMSE) between the esti-
mated and ground-truth CRFs and for each method we plot
the number of image stacks with RMSE less than a spe-
ci�c value. Although the main advantage of our approach is
in handling highly dynamic scenes, we demonstrate similar
performance in comparison to the state-of-the-art algorithm
of Lee et al. [15] on this synthetic dataset with only image
noise. Next, we show the performance of our approach on
casually captured images of real world scenes.

4.2. Simulations on real dataset

We use 20 RAW multiple exposure image sets from Sen
et al. [23]. These images, shown in the supplementary ma-
terial, cover a variety of different cases (indoor, outdoor, dy-
namic, and static) and have been taken by hand-held cam-
eras. Moreover, in most cases both the aperture size and
the exposure time are varied resulting in having different
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Figure 2. Cumulative histogram of number of successful cases
w.r.t. RMSE for the entire real dataset. Our method shows sig-
ni�cant improvement over the previous approaches.

defocus blur in the images of an stack. We demosaic the
RAW images and apply 201 CRFs from the DoRF database
to generate a set of20� 201 = 4020multiple exposure im-
age stacks. Note that the radiometric calibration needs to be
performed separately for each color channel. To show our
results we arbitrarily chose to perform the radiometric cal-
ibration for green channel only. To have a fair comparison,
we remove the global camera motion in each image stack
by homography and use the aligned images as input to all
the other approaches.

Fig. 2 shows that our method has superior performance
in comparison with the other radiometric calibration ap-
proaches. To evaluate the effect of scene properties on
the performances, we show comparison on four individual
image stacks in Fig. 3. Mitsunaga and Nayar's approach
is designed to work on static images, and thus, performs
poorly in all the cases. Note that although the image stack
in Fig. 3 (a) is almost static, their method performs poorly
because of the images having different defocus blur. Lee
et al. use pixel correspondences, and thus, fail to robustly
estimate the CRF for the image stack shown in Fig. 3(b)
with drastic change in defocus blur. However, since the his-
togram of scene radiance in different images is fairly simi-
lar, the Grossberg and Nayar's approach performs well. On
the other hand, the image stack in Fig. 3 (c) contains large
motion and their method fails to robustly estimate the CRF
because of the violation of the histogram similarity assump-
tion. Nevertheless, Lee et al.'s approach is able to handle
large motion through outliers rejection and performs well
in this case. Finally, all the other methods perform poorly
in Fig. 3 (d) because of drastic change in defocus blur and
large motion. Our approach consistently produces better re-
sults in all the cases.
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Figure 3. Cumulative histogram of the number of successful cases w.r.t. RMSE for four real exposure stacks from [23]. Only two images
for each set are shown for compactness (see supplemental for fullsets), and a gamma curve is applied to them for display. Our method
performed consistently well in all cases we tested, often much better than existing approaches. Note that scene (a) is almost entirely static
so several methods perform well.
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Figure 4. Effect of polynomial order on optimization method. (a)
Using our IMFs in least squares framework. (b) Proposed method.
Please see the text for description.

4.3. Analysis

Effect of polynomial degree:As explained in Sec. 3.1,
we use annth degree polynomial function to model the CRF.
Increasing the polynomial degreen would increase the �ex-
ibility of the method to model more complicated CRFs, but
increases the chance of over�tting to noise. We evaluate the
effect of polynomial degree in our rank minimization frame-
work and compare it to the least squares framework, as pro-
posed by Grossberg and Nayar [7], in Fig. 4. As can be
seen, there is a signi�cant drop in performance of the least
squares framework from 7 to 8 which shows this approach
is prone to over�tting. On the other hand, our rank mini-
mization framework consistently produces better results as

the polynomial degree increases.

Effect of using forward and inverse IMFs: As ex-
plained in Eq. 6, we handle the discretization problem using
two observation matricesD i and D 0

i computed from for-
ward and inverse intensity mapping functions. We evaluate
the effect of each term by comparing the result of our ap-
proach using forward, inverse, and both of them. As can be
seen in Fig. 5 (a), using both forward and inverse intensity
mapping function improves the RMSE performance on an
average for the synthetic dataset.

Effect of combining observation matrices: As ex-
plained in Sec. 3.1, we divide theN images into overlap-
ping groups ofm images. We then compute an observation
matrix, D i , for each group and use all of them in a sin-
gle energy function. We now compare this approach with
an approach where we use just one observation matrixD i

and the corresponding inverse observation matrixD 0
i . We

perform this analysis on real image dataset. We came up
with several strategies to select one observation matrix out
of all the valid ones. The RMSE performance of each of
this strategy is compared with our approach and is shown
in Fig. 5. The different strategies which we used involved:
1) always using the �rst observation matrix, i.e., using im-
ages with lower exposure values, 2) always using last ob-
servation matrix, i.e., using images with higher exposure
values, 3) always using center observation matrix. On an
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Figure 5. We analyze the effect of different components of our op-
timization problem on the overall RMSE performance.(a) Effect
of using forward and inverse IMFs.(b) Effect of combining ob-
servation matrices. Please see the text for description.

average, our approach gave the best RMSE performance as
compared to any of the above discussed strategies. Our ap-
proach tries to utilize all the availableN images in the mul-
tiple exposure image stack by estimatingg which linearizes
each of the valid observation matrices and hence is more
robust as compared to selecting an observation matrix con-
structed using pairwise IMFs computed on a subset ofN
images.

5. Application in HDR imaging

We demonstrate the application of our method in high-
dynamic range (HDR) imaging by using it as a prepro-
cessing step for HDR reconstruction algorithms of Sen et
al. [23] and Oh et al. [22]. These approaches take multiple
low-dynamic range (LDR) images at different exposures as
input and generate an HDR image, but assume the LDR im-
ages are linearized. Therefore, if the input LDR images are
in jpeg or other non-linear formats, the CRF need to be es-
timated by a radiometric calibration approach and be used
to linearize the images. Using our method for radiometric
calibration enables such HDR reconstruction methods to be
applied to any non-linear image set. Working directly with
such images eliminates the need for RAW images which
usually take a lot of memory (around 100MB for the im-
age stack) and may not be available for all the commercial
cameras. This is even more necessary for HDR video al-
gorithms like Kalantari et al. [12] which need RAW video
frames, requiring extremely huge memory even for a short
video. However, using our method as a preprocessing step,
such HDR image and video reconstruction methods can be
more generally applied in practice.

As described in Eq. 7, to resolve the exponential ambi-
guity, exposure ratios should be known. However, in some
cases this information is not available and it is important
to estimate the exposure ratios directly from the input LDR
images. This can be done by modifying Eq. 7 to have a con-

straint on the inverse CRF for each color channel as follows:

�̂ = arg min
�

X

i

X

j

X

l

[ĝ l
l (bj )� ki +1 ;i ĝ

 l
l (� l i;i +1 (bj ))]2

s:t ĝ 1
1 (� ) = �; ĝ 2

2 (� ) = �; ĝ 3
3 (� ) = �

(8)

where� = [ k2;1 k3;2 � � � kN;N � 1  1  2  3] is an unknown
vector and indexl represents different color channels. The
estimated inverse camera response function for each color
channel,ĝl

 l (�), satis�es the above constraint and differs
from the true inverse camera response function by the expo-
nential ambiguity.[k̂2;1 k̂3;2 � � � k̂N;N � 1] are the estimated
pseudo exposure ratios. The constraints shown in Eq. 8 are
arbitrary and can be set according to the application. In our
experiments we set� = 0 :5 and� = 0 :2. Given non-linear
input LDR images, we apply the inverse camera response
functions solved using Eq. 6 and 8 to recover linear LDR
images and pseudo exposure ratios. We can then use the
linearized LDR images and pseudo exposure ratios in an
existing HDR reconstruction algorithm.

We show the result of HDR reconstruction methods of
Sen et al. [23] and Oh et al. [22] using different radiometric
calibration methods as a preprocessing step in Fig. 6 and 7,
respectively. Since the HDR reconstruction method of Hu
et al. [11] does not require radiometric calibration, we also
show their results. Note that since Lee et al. and our ap-
proaches are based on rank minimization, we use the above
method to estimate the pseudo exposures, but provide the
ground-truth exposures for Grossberg and Nayar [7]. As
seen, using our method to perform radiometric calibration
in the preprocessing step results in artifact-free HDR im-
ages in all cases.

We have tested the above approach for many non-linear
LDR image sets and were able to achieve a good estimation
of inverse camera response function and the pseudo expo-
sure ratios, and therefore, achieve artifact-free reconstruc-
tion of HDR images. Hence, using our method to estimate
the inverse camera response function, the HDR reconstruc-
tion methods, that assume the input LDR images to be linear
in nature, can in general be applied to any non-linear input
LDR image set, thus improving their applicability.

6. Conclusion

We have presented a new radiometric calibration ap-
proach that could robustly recover inverse camera response
function from multiple exposure images of a dynamic
scene. Our proposed intensity mapping function estima-
tion method is robust to large scene motions and other
noisy observations. We have proposed a new optimiza-
tion method, that uses intensity mapping functions in a rank
minimization framework and solves for the inverse camera
response function. We showed the superior performance of
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our method as compared to other radiometric calibration ap-
proaches by conducting extensive experiments on synthetic
as well as real datasets. Finally, we showed that how using
our approach as a preprocessing step improved the quality
of some of the state of art algorithms for high dynamic range
imaging.
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