
Fig. 2. Synaptic weight import 

(i.e. cell tuning) statistics: the 

measured cell currents, at the 

input voltage of  VG=2.5V, 

VD=1V, vs. the target currents 

(computed at the external network 

training). The dashed red lines 

correspond to perfect tuning.    
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Abstract - Mixed-signal neuromorphic circuits based on analog 

nonvolatile memory devices may far surpass their digital 

counterparts in performance and energy efficiency. Recently, we 

have successfully implemented one such circuit – a medium-scale 

multilayer perceptron image classifier based on floating-gate 

memory cell matrices, redesigned from a commercial-grade 

180-nm NOR flash memory, and have experimentally confirmed 

its superior performance and energy efficiency.  In this paper, we 

report results of extended experimental testing of this circuit, 

focused on the chip-to-chip statistics, long-term drift, and 

temperature sensitivity. The results are very encouraging, showing 

no evident showstoppers on the way toward practical deep 

neuromorphic networks based on this technology. 
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memory; reliability; temperature-insensitive design  

  

I. INTRODUCTION 

Although the main principles of analog neuromorphic 
circuits have been proposed three decades ago [1], their 
real-world applications were rather limited, in part due to the 
lack of efficient implementations of adjustable synaptic weights 
- a critical component of almost any neural network. In the most 
sophisticated demonstrated systems of this type [2, 3], the  
weights were implemented using “synaptic transistors” [2, 3],  
floating-gate memory devices fabricated using a standard 
CMOS logic process. Unfortunately, the chip footprint of such 
devices is rather large (~1,000 F2 per cell, where F is a process 
feature size), resulting in lower speed and energy efficiency. 

Recently, we have successfully designed, taped-out, and 
tested a 28×28-binary-input, 10-output, three-layer perceptron 

classifier [4] (Fig. 1), based on two floating-gate cell matrices, 
redesigned from a commercial embedded 180-nm NOR flash 
memory, to allow individual, precise analog tuning of cell 
conductances [5, 6]. The testing showed a 94.7% fidelity of 
classification of the MNIST benchmark, within 2% of the best 
value obtained in computer simulations of this network. Both 
the inference time delay (below 1 µs) and the energy 
consumption (below 20 nJ per pattern) are about ×103 lower 
than those of the IBM TrueNorth chip, fabricated using a 28-nm 
technology, for the same task, at similar fidelity [4]. In this 
paper, we describe results of additional testing of chip-to-chip 
variations, weight retention, and temperature sensitivity, and 
discuss their impact on the system’s performance. 
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Fig. 1. High-level architecture of the demonstrated multilayer perceptron 

network (with the 2nd array’s tuning circuitry not shown for clarity). 
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II. VARIABILITY, TIME STABILITY, AND TEMPERATURE 

SENSITIVITY  

To evaluate chip-to-chip variations, we tested two more 
chips with the same classifier network. Their testing results are 
labeled by #2 and #3 below, while the data for chip #1 were 
taken from Ref. [4]. In all three cases, the memory cells’ 
conductances were tuned with ~5% precision to the same target 
values, using an automated “write-verify” algorithm. As the data 
in Fig. 2 shows, the average actual tuning accuracy for these 
chips was, respectively, 4.4%, 5.6%, and 3.6%. Similarly to the 
original work (Fig. 2a), the currents of some cells, measured 
after the import of all weights, were outside of 5% tuning 
specifications, because of the half-select disturb effect and 
noise. The measured classification fidelity for these chips was 
94.7%, 94.1%, and 94.2% (Fig. 3). Interestingly, the best 
average tuning accuracy in chip #3 did not result in the best 
classification performance - likely due to variations in other 
circuit parameters, such as opamp offsets. 

 

Fig. 4. Weight retention and temperature sensitivity of chip #1: (a) The  

original tuned weights vs. those measured 7 months later; (b) MNIST test 

set classification fidelity as a function of the ambient temperature.  

Though a 10-year-long retention at temperatures up to 
125˚C is guaranteed for digital NOR flash memory, analog 

circuits are naturally more prone to parameter drifts. As Fig. 4a 
shows, the cell conductances have slightly decreased (by 14% 
on the average) over a 7-month period. The conductance drift 
had a minor though noticeable impact on the output voltages of 
the circuit (Fig. 5); however, the classification fidelity remained 
unchanged at 94.7%. 

 

Fig. 5. Retention results: Histograms of the relative changes (drifts) of the 

output voltages for all 10,000 MNIST test set patterns, shown as a 

normalized difference between the originally measured values and those 

measured 7 months later. 

 Finally, we have measured the impact of the ambient 
temperature on the classification fidelity. Encouragingly, 
despite the exponential temperature dependence of subthreshold 
currents, used for the network operation [4], and no special 
efforts to make the circuit temperature-insensitive, the 
classification performance does not suffer (and actually slightly 
improves) at elevated temperatures (Fig. 4b).  

 These very encouraging results may be in part explained by 
the specific cost function used in training, whose goal was to 

Fig. 3.  Classification statistics: Histograms of the 10 output voltages for 1,000 MNIST test patterns of each class, for three different chips showing that the correct 

outputs (red bars) always dominate. Note the logarithmic vertical scales.  



maximize the voltage difference between the correct and the 
second largest network output [4]. An additional contribution 
was probably given by the differential style of our gate-coupled 
design, and the fact that the changes in the cell conductances due 
to the drift in time and the temperature change are always in the 
same direction for all cells.    

 In summary, our results show no evident obstacles for the 
development of much more complex neuromorphic networks, 
based on commercial-grade floating-gate memory cells. 
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