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Abstract- Recent advances in dense, continuous-state 
nonvolatile memories have enabled extremely fast, compact, 
and energy-efficient analog and mixed-signal circuits. Such 
circuits are perfectly suited, in particular, for hardware 
implementations of the inference operation in advanced 
neuromorphic networks, which requires massive amounts of 
dot-product operations with low-to-medium precision. In this 
paper, we first review typical implementations of such mixed-
signal circuits. We then describe some recent experimental 
demonstrations of prototype mixed-signal neuromorphic 
networks by our team, in particular, a mixed-signal inference 
accelerator with unprecedented speed and energy efficiency. 
The paper is concluded by outlining some urgently needed 
work, in particular the development of high-performance 
general-purpose inference accelerators, and discussing our 
preliminary results in this direction. 

I.    INTRODUCTION 
The rapidly growing range of applications of machine 

learning for image classification, speech recognition, and 
natural language processing have led to an urgent need in 
specialized neuromorphic hardware. Of that, there is much 
more demand for fast, low-precision inference accelerators 
than for higher-precision systems for network training [1].  

Though the vast majority of demonstrated accelerators 
from industry [1-3] and academia [4, 5] are digital, the most 
natural approaches, however, are based on analog and mixed-
signal circuits [6-13]. Though the core principles of analog 
computing had been developed almost four decades ago [14, 
15], its efficient implementations were enabled only recently 
by the appearance of novel continuous-state, nonvolatile 
memory devices [16] - the most crucial elements of analog 
circuits. 

II.    MIXED-SIGNAL CIRCUITS USING EMERGING MEMORIES   
Fig. 1 shows typical mixed-signal circuits for the 

implementation of the vector-by-matrix multiplication 
(VMM), i.e. the most important operation in inference 
accelerators and other neuromorphic tasks, while Fig. 2 
provides their qualitative comparison. Specifically, due to their 
superior integration density, VMMs based on passive 
crossbars with resistive nonvolatile devices (Fig. 1.I) [6], 
including metal-oxide memristors, conductive-bridge and 
phase-change memories, might be the most promising in the 
long term. Passive integration is, however, significantly more 
challenging, since in this case the distribution in the 
memristors’ effective switching thresholds should be narrow 
enough to avoid the disturbance of already tuned devices at 

their half-selection (Fig. 3a,b). Additional gate lines in active 
crossbars with 1T1R cells (inset of Fig. 1.I) solve the half-
select problem [8, 12] and allow for either higher device 
variations at synaptic weight tuning (Fig. 3c), or higher 
precision of the finite weights, or both. (The cell’s selector 
functionality, the main advantage of the 1T1R approach for 
digital memories, is less important for neuromorphic inference 
applications, since writes are typically very infrequent.) 

Though the integration density of the floating-gate (FG) 
circuits (Figs. 1.II and 1.III) is comparable with that of systems 
using 1T1R cells, the fabrication technology available for the 
latter approach is more scalable. The main relative advantage 
of the former approach is the FG cell’s amplification, that 
relaxes the requirement for gain of sensing circuitry, and 
enables very compact peripheral circuits. 

Note also that each of options I-III may also operate with 
time encoding, which allows for better computing precision, 
for the price of certain speed reduction. 

Finally, the lack of continuously tunable devices in the 
switch capacitor approach (Fig. 1.IV) typically enables only 
‘near-memory’ computing (instead of ‘in-memory’ computing 
possible with other options), and leads to inferior density and 
other metrics.     

III.   EXPERIMENTAL DEMONSTRATIONS    
Because of still immature device fabrication technology, 

memristor-based inference circuit demos have been limited in 
complexity, and/or not fully integrated [6, 8, 12]. Fig. 4 shows 
a recent result from our collaboration – a small-scale, one-
hidden-layer perceptron classifier implemented entirely in 
integrated hardware. This specific network used two passive 
20×20 crossbar arrays with on Pt/Al2O3/TiO2-x/Pt memristors 
(Fig. 4a), board-integrated with discrete CMOS components 
[6]. The network was successfully trained (both in-situ and ex-
situ) to perform classification of 4×4 pixel images (Fig. 4c). 
The successful demonstration was facilitated by improvements 
in memristor fabrication technology lowering device-to-device 
variations, and thus enabling accurate individual state tuning 
(Fig. 4d, e). 

The situation is much better for mixed-signal circuits 
based on floating-gate crosspoint devices, due to the 
availability of advanced industrial-grade flash-memory 
technologies. Our team has recently designed, fabricated, and 
tested a prototype mixed-signal, 28×28-binary-input, 10-
ouput, 3-layer neuromorphic network (Fig. 5a) based on 
embedded nonvolatile FG cell arrays, redesigned from a 
commercial 180-nm NOR flash memory [13]. Each array 



performs a very fast and energy-efficient analog VMM 
operation. All functional components of the prototype circuit, 
including 2 synaptic crossbar arrays with 101,780 floating-gate 
synaptic cells, 74 analog neurons, and peripheral circuitry for 
weight adjustment and I/O operations, have a total area below 
1 mm2. Its testing on the MNIST benchmark set has shown a 
classification fidelity of 94.65%, close to the 96.2% obtained 
in simulation (Fig. 5b). Most importantly, the classification of 
one pattern takes time less than 1 μs (Fig. 5c) and energy below 
20 nJ – both numbers at least 103× better than at a digital 
implementation of the same task, with similar fidelity, 
fabricated using a much more advanced process [3].  

Moreover, there are still many reserves for improving the 
performance and energy efficiency of such circuits. For 
example, Fig. 6 shows preliminary results for a much larger 
network-specific inference accelerator with more advanced 
circuitry. This chip was designed and fabricated in a 55-nm 
process, adapted for analog computing applications [9].  

IV.    FUTURE WORK AND SUMMARY 

For the memristor-based approach, the most important 
goal is the development of foundry-grade, highly uniform 
fabrication technology, which would allow for monolithic 
integration of much larger, denser crossbars with CMOS 
circuits.  Hopefully, this work would piggyback on the recent 
industrial efforts toward digital resistive memories.      

For the FG-based approach, the preliminary experimental 
results for the chip-to-chip statistics, long-term drift, and 
temperature sensitivity of the 55-nm [9] and 180-nm [13] 
prototypes showed no evident showstoppers towards much 
more complex deep neuromorphic networks. This is why the 
major focus of future work in this direction may be on the 
system-level design. In this context, while ASICs have 
important application niches, general-purpose inference 
accelerators [2, 3, 18] may be more useful at the moment, in 
part due to the continuing evolution of neuromorphic 
algorithms and architectures.  

Fig. 7a shows one such architecture, currently being 
developed by our group. The core of this design is four M×N 
rectangular blocks of K×K VMM crossbar arrays, with front-
end digital-to-analog converters (DAC) and back-end sensing 
circuitry. The array outputs can be connected, via 
programmable analog buses, to implement larger-size VMMs. 
Other components of the accelerator include an instruction 
memory, a controller for decoding instructions and 
orchestrating the data flow, a small memory buffer for keeping 
frequently-used data close to the processing unit, and the main 
memory based on embedded DRAM for storing input, output, 
and intermediate data. 

The performance of the proposed processor was simulated 
for three representative neural network architectures [19-21] 
(Fig. 7b). The results show that the mixed-signal VMM blocks 
take the largest fraction of the chip area, while 
communications, i.e. sending data across the VMM blocks, 
often dominates its energy consumption. This fact highlights 
the importance of in-memory computing using very dense 
memories for storing weights, as well as of an efficient design 

of peripheral VMM circuits and configurable busses, which 
allows fine-grain mapping of network models.  

Our preliminary estimates show (Fig. 7c) that general-
purpose mixed-signal inference accelerators may retain at least 
the same large advantage, in speed and energy efficiency, over 
their digital counterparts, that has been demonstrated in our 
first, network-specific experiments. The experimental 
verification of these estimates, as well as the refinement of 
cons and pros of various approaches to this key task of 
neuromorphic computing are very important goals for the 
nearest work.    
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Fig. 1. Major types of mixed-signal VMM circuits. In (I), the matrix elements (‘synaptic weights’) are represented by continuous states of adjustable nonvolatile
resistive devices (e.g., memristors), while the input signals are encoded with either (a) amplitudes, or (b) durations of voltage pulses. Thetop right inset shows an active
(‘1T1R’) cell, which may be also used in circuits (a, b). In (II, III), each weight is stored in subthreshold-mode floating-gate (FG) cells, implemented as either (II) a
current mirror pair formed by peripheral and array FG transistors, or (III) a voltage-gated current source. In (III), both inputs and outputs are encoded by the duration of
pulses, generated within the corresponding time frame t, as shown at the bottom of panel III. In the switch capacitor approach (IV), P-bit weights are typically stored in
binary-weighted fixed-value crosspoint capacitors,and the computation is performed by controlling thecapacitor charge/discharge, using theswitches φ1 and φ2.
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0T

R amp/amp ++ + +++ ++ - [6]
Ib R time/amp +++ ++ ++ +++ - [7]*
Ia

1T
R amp/amp + ++ ++ + + [8]

Ib R time/amp ++ +++ + ++ + [7]*
II FG amp/amp + ++ ++ + ++ [9]
III FG time/time ++ +++ + ++ ++ [10]
IV C amp/amp - - + ++ +++ [11]

Fig. 2. Approximate comparison of features of the VMM approaches
outlined in Fig. 1: ‘+++’ - the best, ‘-’ – the worst. The score for
precision is based on a combination of the input, weight, and
computing accuracies. The scores for density, speed, and energy
efficiency (EE) reflect contributions from both the arrays and the
peripheral circuits. Besides the maturity, all scores are for the expected
level of each technology after it has been matured, rather then for its
current state-of-the-art . *Ref. [7] describes, in particular, the additional
circuitry for the conversion to the time-encoded output signals.

Fig. 3. Switching threshold
variat ions in memristors: (a) A
typical hysteret ic dc I-V curve, for a
symmetric voltage sweep (lower
bottom inset). The inset histograms
show typical variat ions in the
switching voltages at which the
effective conductance changes by
more than a certain amount. (b, c)
Four-device crossbar fragments
with (b) passive ‘0T1R’ and (c)
active ‘1T1R’ cells. The applied
voltages show a specific example of
the “half-biasing” technique for
increasing the conductance of the
selected device (shown in red).
Solid black lines show the half-
selected memristors, while the gray
color is used to show unselected
devices, with no applied voltage.

Fig. 4. MLP classifier demo based
on passively integrated metal-oxide
memristors [6]: (a) A perceptron
diagram showing (as SEM images)
the crossbar port ions used in the
experiment ; (b) The implemented
network’s graph; (c) An example of
measured output voltages for the
ex-situ-trained network, tested on a
set of 4 stylized 4×4-pixel letters;
(d, e) An example of memristor
tuning, showing (d) the desired
‘smiley face’ pattern, quantized to
10 gray levels, and (e) the actual
resistance values measured after
tuning all devices in a 20×20
memrist ive crossbar with the
nominal 5% accuracy, using an
automated tuning algorithm. The
white / black pixels correspond to
effective resistances 96.6 / 7.0 kΩ,
measured at 0.2 V.
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