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ABSTRACT 

Low-to-medium resolution analog vector-by-matrix multipliers 
(VMMs) offer a remarkable energy/area efficiency as compared to 
their digital counterparts. Still, the maximum attainable 
performance in analog VMMs is often bounded by the overhead of 
the peripheral circuits. The main contribution of this paper is the 
design of novel sensing circuitry which improves energy-efficiency 
and density of analog multipliers. The proposed circuit is based on 
translinear Gilbert cell, which is topologically combined with a 
floating nonlinear resistor and a low-gain amplifier. Several 
compensation techniques are employed to ensure reliability with 
respect to process, temperature, and supply voltage variations. As 
a case study, we consider implementation of couple-gate current-
mode VMM with embedded split-gate NOR flash memory. Our 
simulation results show that a 4-bit 100×100 VMM circuit designed 
in 55 nm CMOS technology achieves the record-breaking 
performance of 3.63 POps/J. 
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1. Introduction 
Numerous experimental results [1-3] as well as theoretical studies 
[4, 5] show that analog computing could be extremely energy 
efficient at low to medium precision of operation. Recent work 
showed that even accounting for input/output data conversion, 
mixed-signal computing can be very energy efficient for at least 6-
bit operation precision [6]. This creates opportunity for seamlessly 
integrating analog accelerators into conventional digital computing 
circuits to improve system’s energy efficiency. Analog computing 
is also enabling some new types of in-memory computing, and 
hence can address grand challenges of today’s digital computers.  

Naturally, analog computing is less robust to various nonidealities 
such as process variations, noise, and nonlinearities and, hence, 
cannot compete with digital computing at higher (> ~8 bit) 
precision. There are, however, plenty of important applications, 
e.g., in machine learning, signal processing, and scientific 
computing, relying on low-to-medium precision arithmetic, that are 
serving now as a motivation behind development of efficient purely 
analog and mixed-signal computing circuits.   

Vector-by-matrix multiplication is typically the most frequent 
operation in many algorithms and computational tasks, most 
importantly including various types of artificial neural networks. 

Analog VMMs have been designed in various flavors and 
topologies utilizing both CMOS and post-CMOS technologies [7]. 
The most prospective analog VMM circuits are perhaps based on 
current-mode designs employing metal-oxide memristors [3] due 
to the excellent scalability, analog properties, and non-volatility of 
such devices. Yet, memristor fabrication technology is not 
advanced enough for very large-scale integration. Therefore, some 
of the research is now focused on more mature, but less dense 
nonvolatile memories (NVMs), such as floating gate memories [8-
11]. For example, an experimentally tested analog neuromorphic 
chip [2] performed high-fidelity classification with record-breaking 
speed, density, and energy efficiency, and featured negligible chip-
to-chip variations.  

Interestingly, numerous papers have been published on the analysis 
of crossbar array circuits and devices, but little work has been done 
on optimizing the peripheral circuits. Yet, some prior works 
claimed that peripheral (sensing) circuitry is the most energy and 
area demanding component of current-mode VMMs. For example, 
the power consumption of the peripheral circuitry exceeded 90% in 
[2] and 83% in [3] of the total budget. The reported area overhead 
was crudely 95% and more than 55%, correspondingly, for these 
two studies. This is why the major goal of this work is the 
development of a high-performance peripheral circuitry for 
current-mode NVM-based VMM. Our specific focus is on sensing 
circuit, which is the most important VMM peripheral component. 
Other peripheral circuits can be typically shared among multiple 
VMM blocks and have rather negligible overhead. In the context of 
artificial neural networks, the periphery (neurons) may include 
activation function circuits, whose overhead is also typically 
negligible as compared to sensing circuits. 

2. Previous Work 
2.1 Mixed-Signal VMM Circuits  
A number of different VMM topologies, some implemented with 
unique peripheral circuits, have been proposed in analog and 
mixed-signal domains [12-15]. For example, time-based [12,13,15] 
and switch-capacitor [14] multipliers use charge to encode data. 
The former approach, designed to operate in very low voltages, is 
based on charge integration from digitally programmable current 
sources. One of its challenges is process-voltage-temperature 
(PVT) variations that may limit the smallest integration delay and 
hence the circuit performance. In addition, a large capacitor (e.g., 
25 pF in [12]) might be needed to minimize charge injection issues 
and increase the signal-to-noise ratio.  

In the second approach, precisely-fabricated fringe capacitors are 
employed to implement active multipliers with a moderate 
precision (> 4-bit) [14]. Its main issue is large and power hungry 
active amplifiers. Passive switched-capacitor circuits could in 
principle address this problem though at the expense of having 
more leakage, capacitive coupling, and charge injection issues, 
which in turn limits computing precision to < 4-bit [1]. 
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In current-mode approach, multiplication and addition are 
performed with fundamental Ohm and Kirchhoff’s laws (Fig. 1). 
Here, the j-th output (current in Fig. 1), is given 
by

𝐼௝ = ∑ 𝑊௝௜
ே
௜ୀଵ 𝑉௜ ,  

where Wji, are the matrix weights (crosspoint conductances) and Vi   
is the ith element of the input (voltage) vector. In general, depending 
on the choice of utilized crosspoint devices and peripheral circuits, 
both input and output vectors can be presented in terms of either 
voltage or current. Weights are encoded as conductances in 
resistive crossbar memories [3], subthreshold currents in floating 
gate memories [2], or transistor widths in pure CMOS designs [16]. 

For example, cascode current mirror structure was used in [16] to 
implement a fully current-mode VMM, i.e. with both input and 
output vectors encoded via currents. Weights are realized by a set 
of transistors whose widths are scaled according to the 
predetermined values. The main caveat of such design is an area 
(and hence energy) overhead for weight implementation, which 
exponentially increases with weight precision. A more promising 
solution is to implement matrix weights with NVMs, such as 
programmable conductance crosspoint devices.  Especially 
encouraging is a recent work on VMMs based on metal-oxide 
memristors [3] and floating-gate memories [8-10].  

2.2 Flash-based VMM design 
Implementations of neuromorphic circuits with floating gate 
memories have a long history [6].  The most prominent examples 
are circuits based on so-called “synaptic transistor”, which is a type 
of floating gate memory implemented with standard CMOS 
process. Even though many efficient systems have been built using 
synaptic transistors, the main caveat of that approach is bulky 
memory cells, with ~103 F2 footprint per memory device, where F 
is the process minimum feature size [6]. In another, more recent 
work, industrial-grade memory cells, that have ~25 F2 footprint per 
cell, were modified to for analog circuit applications [10]. The 
redesign allowed for precise tuning of the individual cells, which is 
a necessary functionality for analog-mode VMMs. The effective 
area of redesigned cell was tripled though it was still an order of 
magnitude denser than that of synaptic devices.  

Some of the results presented in this paper are based on such 
redesigned 55-nm ESF3 NOR flash memory (Fig. 2a-c). Due to its 
split-gate structure, ESF3 devices offer very high output 
impedance. For example, the experimentally measured output 
resistance is about 100 GΩ in subthreshold regime for the targeted 
current range, which is useful for the considered analog 

applications. Also, the cell’s compact structure results in a very low 
capacitance, of the order of ~75 aF/cell on average, during 
subthreshold operation. (More details on the various aspects of this 
technology, including I-V characteristics, erasure and programming 
operation, cycling endurance, retention, noise are discussed in 
[10].) 

Figure 2d shows the most common design for floating gate memory 
VMMs based the gate-couple topology. In such design, the input 
current vector is applied to an array of diode-connected floating 
gate memory cells. The two-quadrant multiplication is 
implemented by dedicating two rows per output and using the 
conventional differential weight scheme.  

2.3 Sensing Circuits for Current-Mode VMMs  
The peripheral sensing circuit is typically designed to provide low 
input impedance on a shared bitline, i.e. the horizontal lines in Fig. 
1, and sink/source the current flowing in it. The simplest approach 
for sensing the current is to use a low-voltage cascode current 
mirror. Its main challenges are nonlinearities in the transfer 
function and voltage variation on the virtual bias, which can 
significantly deteriorate the precision. In addition, current mirrors 
are susceptible to process variations, which mandates large devices. 
The upshot is low-speed and high-power consumption.  

Conventional transimpedance amplifiers (TIAs) have been used in 
both nanodevice computing engines [3] and flash-based dot-
product circuits [10] to pin the virtual bias needed for linear 
operation and for I-V conversion. The area overhead of operational 
amplifiers has been disregarded in favor of excellent linearity. In 
addition, the amplifiers are often designed to work in a certain 
“operating point” rather than dealing with a large-signal input. This 
requires a huge overdesign cost in terms of power and area for 
proper functionality. There are other drawbacks including the 

 
Fig. 1. A general idea of M×N current-mode all-analog VMM circuit. 
The inset shows several options for crosspoint device implementation.  
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Fig. 2. Current-mode VMM implementation with split-gate NOR flash 
memory: (a) Schematics and (b) TEM image of SST’s ESF3 supercell; (c) 
Drain-source current as a function of control-gate voltage under typical 
read conditions (VBL = 1 V, VWL = 1.2 V, VSL = 0 V) for various 
programmed states. The unshaded area shows typical low-voltage 
operating region; (d) Example of a 2×2 VMM circuit, inluding two rows of 
peripheral cells, and the key equations governing its operation. 



requirement of high gain amplifier in a TIA, the dependence of 
bandwidth on feedback resistor, the need for compensation, and the 
circuit slews for a significant period of time.  

All-analog current-mode designs could potentially allow for a 
much better performance/cost. Indeed, another implementation 
approach is to use a second-generation current conveyor (CCII). 
The idea was originally introduced in [17], where CCII has been 
used to build current summers featuring low input impedance. 
Since then, various CMOS implementations were proposed [18], 
utilizing either open-loop and close-loop structures, with the former 
preferred for a better speed and dynamic behavior. It is also worth 
mentioning that CCII designs based on the topology introduced in 
[19] are not limited by slew-limited transient response and the gain-
bandwidth product tradeoff and hence, in principle, achieve higher 
speed compared to TIAs. However, their overall energy 
consumption and circuit area are still very high (see, e.g., [20]). 
Also, the designs based on operational amplifiers are not appealing 
for obvious reasons.  

In light of the aforementioned shortcomings, we have designed a 
compact current-mode peripheral circuitry based on Gilbert 
translinear loop, which provides a relatively low-input impedance 
and a wide range of gain control and temperature insensitivity. The 
design unique features ultimately enable excellent linearity and 
high-speed and low-energy operation. 

3. Proposed Sensing Circuit 
The proposed circuit is shown in Fig. 3. The array bitline is 
connected to node “Q”, while array current is supplied by M3a. Due 
to the local feedback loop, the increase in the input current leads to 
decrease in I2a and, as a result, differential voltage between X and 
Y nodes, which is then converted to current by the following low-
gain amplifier.  

M1, M2, and M4 pairs are designed in weak inversion and M3 pair 
is velocity saturated. The rest of the devices are operated in the 
saturation regime. When biased in weak inversion, M1,4 pairs form 

a translinear loop, which has an excellent wideband current-
following behavior.   

When the input current is zero, i.e. Iin = 0, I3a=I3b, the symmetrical 
structure of the circuit imposes I3a = Ib/2, where Ib is the bias current 
provided by M8.  Since Iin is supplied by M3a, the circuit analysis 
yields  

𝐼ଵୟ = (𝐼ୠ − 𝐼୧୬) 2⁄ ,   𝐼ଵୠ = (𝐼ୠ + 𝐼୧୬) 2⁄  .  

Since M1,4 pairs are biased in subthreshold, VXY is expressed as 

𝑉ଡ଼ଢ଼ = 𝑛𝑉୘ ln((𝐼ୠ + 𝐼୧୬) (𝐼ୠ − 𝐼୧୬)⁄ ) ,  

where VT and n are thermal voltage and subthreshold slope factor, 
respectively. Furthermore, a simple analysis shows that  

ூర౗

ூరౘ
=

ூౘାூ౟౤

ூౘିூ౟౤
.

 
 

Assuming that IF = I4a+I4b is the bias provided by M9, the output 
current, i.e. the sensing circuit transfer characteristic, is given by 

𝐼୭୳୲ = ൬
𝐼୊

𝐼ୠ
൰ 𝐼୧୬. (1) 

To improve the performance, one can use low-Vth devices for M1,3,4 

pairs (though this is not mandatory for proper functionality). As we 
show later, in 55 nm process, this allows reaching the same 
nonlinearity performance with crudely 15% less power 
consumption.  

4. Circuit Analysis 
4.1 Nonlinearity 
Closed-loop high-gain amplifiers provide excellent linearity as 
long as the gain requirements are met. For current processing 
circuits, nonlinearity becomes challenging in part due to the short 
channel effects in sub-deca-nm technologies. Both deterministic 
and random factors result in deviation from the ideal behavior given 
by Eq. 1.  

Specifically, the main intrinsic nonlinearity originates from 
unequal source drain voltages across M3a and M3b. The maximum 
relative error, defined as (δr)max  = ( |Iout-Iout

ideal|/ Iout
ideal )max due to 

only this factor is shown in Figure 4a. Reducing (δr)max  is related 
to minimizing δ = I3a/I3b, which in turn, is a function of Iin and Ib, 
and is achieved by designing M3 in the deep velocity saturated 
region. For example, (δr)max could be made as low as 0.1% by 
properly adjusting the bias current.  

The second issue is process induced variations. For example, 
mismatch between I3a and I3b creates an offset in the transfer 
characteristics. One straightforward solution is to adjust 
accordingly memory cells’ conductances. Indeed, I3a - I3b offset can 
be compensated by properly tuning conductances in two additional 
auxiliary columns of memory cells, i.e. with two extra devices per 
each bitline. After measuring the input-referred offset, one of the 
devices of a pair, based on the sign of the offset current, is set to 
either sink or source the desired current, while the other one is fully 
turned off. This approach allows avoiding scaling transistors in the 
sensing circuit, with minimal power/area overhead. Process-
induced variations also impact (δr)max, since δ depends on the 
matching of the M3 pair. Additionally, a mismatch in the voltage 
threshold of M1,4 pairs could result in deviations from ideal output 
current. The solution here again is to compensate total resultant 
offset by fine-tuning crossbar devices.  

To evaluate the impact of process variations, we use statistical 
simulations over all corners to find the worst-case nonlinearity. As 

 
Fig. 3.  The proposed sensing circuit for current-mode VMM (not 
including biasing circuitry). 
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shown in Fig. 4b, both mean and variance of the total nonlinearity 
error could be as low as 0.26%. This can be improved even further 
by increasing the area of the circuit (discussed below). It is worth 
mentioning that the discussed techniques raise energy 
consumption, naturally yielding a precision-energy trade-off. Also, 
in practice, the nonlinearity error is expected to be less, by a factor 
of ~5 according to our estimates, when accounting for symmetric 
layout mismatch reduction techniques, which were not considered 
in this work.  

Finite input conductance of the sensing circuit contributes to the 
nonlinearity of VMM operation rather than sensing. Intuitively, 
when the input current increases, I2a decreases and so does the M2a 
source voltage. The maximum change in M2a’s source-gate voltage 
is given by –nVT ln[1-(Iin/Ib)max]. However, the negative local 
feedback, formed by M10 and M11, decreases M2a’s gate voltage, 
and therefore compensates for source-gate voltage change. 
Additonally, proper sizing of M11 and controlling the bias current 
allow controling virtual bias swing for a given maximum input 
current (Fig. 4c). The impact of this swing on computing precision 
depends on the type of memory cell used in the array and will be 
discussed in Sect. 5.2 for the case of floating gate memory.  

Finally, it is noteworthy that all nonlinearity terms reduce 
simultaneously with respect to the bias current (Fig. 4). Therefore, 
in a typical design, the minimum bias current could be determined 
by the precision requirements.   

4.2 Noise  
The proposed circuit has a relatively low input impedance so that 
input-referred current noise scales linearly with bias current (Fig. 
5a). It should be noted however, that for the case of sub-deca-
nanometer memory technologies and, in particular, floating-gate 
memories, low-frequency noise of these devices would dominate 
the noise power [10] – see Sect. 5.2 for more discussion.  

4.3 Settling Time 
In general, transfer function linearity requirement determines 
determine the transistor sizing, and, in particular, the smallest Ib, 
and capacitances CX, and CY. With these values fixed, the settling 
time, and, as a result, energy consumption, can be further optimized 
by finding the optimal output pole location. The output pole can be 
relocated by adjusting the output current, e.g., by changing IF. For 
a certain translinear loop size, initially increasing IF improves the 
settling time (Fig. 5b). However, at some point, the overshoot in 
time response becomes excessive and deteriorates the settling time. 
Increasing the output current is no longer helpful since the 
dominant pole is no longer attributed to the output pole. To 
summarize, the optimum settling time is obtained by adjusting IF 

based on given Ib, CX, and CY, i.e. the location of the first pole, and 
CL, i.e. corresponding dimensions of the load array.  

4.4 Temperature and Supply Variations  
Figure 5c shows the temperature dependence of the considered 
nonlinearities. In general, virtual bias is sensitive to temperature 
variations because Vt is a function of temperature. To bound the 
worst-case ΔV below the desired value, across all temperatures, Ib 
is supplied from a PTAT (proportional to absolute temperature) 
current source. Fig. 5c shows that this compensation scheme allows 
to limit virtual bias variation within wide range of temperatures. 
Additionally, to keep the slope of the transfer function temperature 
invariant (within < 0.2%), IF is also supplied by the same PTAT 
source. The temperature sensitivity of both ΔV and slope can be 
further improved by designing a more complex compensation 
circuitry.  

Finally, Figure 5d shows that reasonable ±4% fluctuations in 
supply voltage result in <0.5% change of the transfer function 
slope. This is because the slope depends only on bias currents, so 
that as long as the current reference, which supplies these bias 
currents, is voltage insensitive and critical devices remain in their 
targeted operating region, the linearity remains acceptable.  

 
Fig. 4. The impact of nonideal transistor behaviour, process variations, and finite condutance on the circuit linearity as a function of bias current: (a) Error 
due to source voltage variations across M3a and M3b  assuming Iin = (Iin)max in TT corner, (b) total realtive error at the output due to device mismatches, and 
(c) virtual bias variations. For all panels, (Iin)max = 1 µA and VDD = 1.2 V. 
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Fig. 5. Analysis of noise, settling time, and PVT variations: (a) Total 
integrated input-referred current noise for several IF as a function of bias 
currents at Iin = 0 and 100 MHz bandwidth; (b) Settling time as a function 
of translinear loop size and IF current at Ib = 1.75 µA; (c) Temperature 
dependence of virtual bias variation (ΔV), slope, and total worst-case 
nonlinearity error; (d) Impact of supply voltage variations on ΔV, transfer 
function slope, and total worst-case nonlinearity error. For all panels, 
(Iin)max = 1 µA, CL = 7.5 fF. 
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5. Case Studies 
5.1 Metric-Optimal Sensing Circuits  
We designed four different styles of the proposed sensing circuit, 
in each case optimizing bias current and size of the devices 
according to the specific metric. In particular, we consider power-
optimal (referred as S1), the area-optimal (S2), the precision-
optimal (S3), and the energy-optimal (S4) designs. In addition, each 
style is implemented based on a targeted 6-bit for S1,2,4 and 8-bit for 
S3 precision requirement. All designs are based on 1.2 V devices in 
Global Foundries 55 nm process technology.   

Fig. 6a summarizes various characteristics of the implemented 
designs, while Fig. 6b shows the impact of input current for S4. (The 
maximum input current is naturally linearly proportional to 
parameter N of VMM circuit.) Figure 6b shows that for small input 
currents, the critical devices must be kept large to counteract the 
process variation effects, resulting in slower operation. On the other 
hand, Ib and width of M1,2,3 can be scaled up accordingly for larger 
maximum input currents to keep the precision/speed constant. The 
power, area, and energy naturally increase with respect to the 
maximum input current.  

The impact of process variations on the circuit’s linearity is also 
studied for all designs (Fig. 6a). Statistical simulations across all 
corners show that the sensing circuitry can effectively operate with 
up to 8-bit precision. In particular, the process-induced precision 
errors are controlled by the proper sizing of the translinear devices 
and the bias current. Dispersion in transfer function slope, which 
follows a normal distribution, is addressed by adjusting the 
weights.  

5.2 All-Analog Current-Mode NOR Flash VMM  
Energy-optimal design S4 is further utilized to investigate 
performance of a current-input current-output fully analog VMM 
based on split-gate embedded NOR flash memory technology.  

One of the most important characteristics for the analog-mode 
VMM is its effective operating precision. Even though S4 design is 
suitable for 6-bit operation, for simplicity, we here consider rather 
conservative assumption that VMM’s input, weight, and computing 
precisions are all effectively 4 bit. To justify it, let us first note that 
the weight precision might be limited by each of the following 
factors: tuning accuracy, drift, bitline bias variations, and 
subthreshold slope nonlinearities.    

The redesigned layout of the memory array allowed to demonstrate 
experimentally >8-bit tuning accuracy for a single cell when 
sufficient number of pulses are applied during tuning procedure 
[21].  The tuning precision is expected to be somewhat lower for 

the current mirror structure, especially considering half-select 
disturbance in the memory array, but still much better than the 
targeted 4-bit precision [10]. The virtual bias variation ΔV can be 
limited to less than 15 mV, which corresponds to < 1% overall 
bitline distortion for the targeted current range. The accelerated 
retention tests have shown less than 1% drift in memory state after 
7 months for the vast majority of devices [2], thus also providing 
evidence for implementation of 4-bit weights. 

In general, the effective weight error due to the subthreshold slope 
nonlinearities depends on the choice of peripheral device state and 
the selected range of states used for the array devices. In addition, 
there is a tradeoff between power consumption and weight 
precision. Indeed, using the memory states corresponding to the 
lower operating voltages (Fig. 2c) helps reducing power 
consumption. The downside is that at these voltages the 
subthreshold slopes are more nonlinear. In light of this tradeoff, the 
state of the peripheral cell and the maximum current via array 
device are assumed to be 30 nA and 10 nA, respectively, under VCG 

= 0.9 V, VWL = 1.2 V, and VBL = 1 V biasing conditions, shown in 
the unshaded region of Fig. 2c.  

Assuming negligible input-referred noise of the sensing circuit, the 
main limiting factors for the computing (output) precision are the 
sensing circuit’s nonlinearities and the low-frequency noise of the 
memory devices. Following the analysis presented in Sect. 4.1, the 
total relative nonlinearity error of the sensing circuit based on S4 
style is 1.1%. The subthreshold current fluctuations are mainly due 
random telegraph noise (RTN) in as-fabricated cells, and, more 
generally, 1/f noise after repeated switching. For example, 
discernible transition between RTN and 1/f noise was 
experimentally observed in 65 nm NOR flash memories within 100 
switching cycles [22]. Our own measurements for ESF3 cells show 
that only few cells (out of 140 total) had severe subthreshold current 
fluctuations, even after cycling each device 1000 times.  

Assuming the targeted maximum current, and the reported 
spectrum with flat region below 1 KHz and the corner frequency of 
~500 KHz [22], the root mean square of the current noise via single 
device is ~575 pA at 300 MHz operating bandwidth. The total 
resultant output signal-to-noise ratio is ~44.8 dB for 100 element 
dot-product operation. (Due to similar physics of operation, 1/f 
noise can be also crudely quantified by considering much more 
numerous reported noise data for standard 55 nm MOSFETs with 
the same width and length.) 

The above analysis takes into account all important nonideality 
factors and shows that achieving 4-bit computing and weight 
precision should be relatively straightforward for the considered 
VMM design. The estimates are rather conservative and, e.g., even 
higher weight precision is possible when using larger operating 
voltages. 

To evaluate and optimize operation speed, we assumed that several 
VMMs are chained in a cascade structure, with output of one VMM 
sensing circuit feeding directly the input of the next VMM stage. 
This assumption is representative of all-analog multilayer neural 
network implementation (though neglects additional circuitry, 
which might be required for neuron implementation). The 
propagation delay through such cascade can be minimized by 
adjusting VMMs’ output pole locations. Note that since the input 
pole of a particular stage VMM is effectively the output pole for 
the preceding stage multiplier, only output pole can be considered. 
Also, out of the two output poles, the first one is always fixed based 
on the sensing circuitry’s targeted maximum input current and 
linearity requirement. Therefore, the goal is to only find optimal 

 
Fig. 6. Sensing circuit results: (a) Various performance characteristics for 
4 different implemented designs assuming (Iin)max = 1 µA and CL = 7.5 fF, 
which crudely corresponds to a 4-bit 100×100 1Q VMM based on floating 
gate memory, driving the same size circuit; (b) Impact of the input current 
on S4 sensing circuit chracteristics. Nonlinearity and virtual bias distortion 
are kept relatively constant at 1.05% and 14.5 mV, respectively. 
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location of the second pole, at which the settling time is the 
smallest. 

More specifically, as discussed in Sect. 4.3, for a desired, fixed 
sensing circuit linearity and given capacitive load, the smallest 
delay is achieved at the specific sensing circuit output current. The 
optimal current value, however, is typically higher than the nominal 
subthreshold current of the minimum size floating gate transistor. 
Forcing such optimal current via single peripheral floating gate cell 
would lead to significant errors in the multiplier operation.  

To overcome this issue, we assume that Mp peripheral cells are 
connected in parallel for each input, which effectively increases the 
width of the peripheral floating gate transistors. In particular, let us 
first note that the optimal output current is proportional to the load 
capacitance, which is (M+Mp)Ccell, where Ccell is memory cell’s unit 
capacitance. Therefore, for the most interesting cases of large M, 
increasing Mp and, simultaneously, output current for optimal pole 
location result in both lowering individual currents via peripheral 
cells and decreasing settling time. More generally, the settling time 
in this case is proportional to (1+M/Mp)Ccell/(Ip)max, where (Ip)max is 
the desired maximum current via peripheral cell.  

Figure 7 summarizes various performance characteristics of the 
considered VMM as a function of its size. As expected, the 
simulation results show that the average energy consumption for 
the dot-product operation (one channel) is growing superlinearly 
with N, mostly due to the increasing maximum input current. The 
number of operations per channel grows linearly, and with constant 
settling time, the energy-efficiency saturates. The relative 
peripheral area overhead is always below 11%.  

6. Summary 
A very efficient sensing circuitry, which utilizes the translinear 
principle of Gilbert cell, is proposed to boost the performance of 
NVM-based analog-mode VMMs. In prior work, the area, energy, 
and density potentials of current-domain circuits were typically 
counterbalanced by the overhead of PVT compensation. In this 
study, offset calibration is performed by considering two auxiliary 
columns of programmable NVMs in the crossbar array so that 
robustness against PVT variations is achieved with minimal 
overhead. As a case study, we investigated several sensing circuits, 
each optimized for a specific metric. Our simulation results show 
that 100×100 4-bit VMM designed in 55 nm CMOS technology 
with embedded NOR flash and employing energy-optimal sensing 
circuit achieves 3.63 POps/J. 
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Fig. 7. Performace, total area, and energy per channel for N×N  VMM 
based on 55 nm ESF3 NOR flash memory. POp/J operation is achieved 
for N > 50, which are practical kernel sizes  for many applications. 
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