
Articles
https://doi.org/10.1038/s41928-018-0039-7

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Hardware-intrinsic security primitives enabled
by analogue state and nonlinear conductance
variations in integrated memristors
Hussein Nili1*, Gina C. Adam   1,2, Brian Hoskins1, Mirko Prezioso1, Jeeson Kim3, M. Reza Mahmoodi1,
Farnood Merrikh Bayat1, Omid Kavehei   3* and Dmitri B. Strukov1*

1University of California Santa Barbara, Santa Barbara, CA, USA. 2National Institute for R&D in Microtechnologies, Bucharest, Romania. 3Royal Melbourne
Institute of Technology University, Melbourne, Victoria, Australia. *e-mail: hnili@ece.ucsb.edu; omid.kavehei@rmit.edu.au; strukov@ece.ucsb.edu

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

NAtuRe eleCtRONiCS | www.nature.com/natureelectronics

http://orcid.org/0000-0003-0027-1145
http://orcid.org/0000-0002-2753-5553
mailto:hnili@ece.ucsb.edu
mailto:omid.kavehei@rmit.edu.au
mailto:strukov@ece.ucsb.edu
http://www.nature.com/natureelectronics

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 1 of 15

 Supplementary Information

1. Memristive crossbar fabrication and characterization

All fabrication was performed at UCSB’s nanofabrication facility
(https://www.nanotech.ucsb.edu/). Two-layer monolithically integrated fully passive TiO2-x
memristor crossbar circuits with an active device area of ~350 × 350 nm2 and with the middle
metal lines shared between the top and bottom crossbars were fabricated using in situ low-
temperature reactive sputtering deposition, DUV lithography, ion milling and a precise
planarization step (Figure S1). The stoichiometry of the switching TiO2-x layer was precisely
controlled by optimizing the reactive DC sputtering parameters.1 The Al2O3 barrier, the active
TiO2-x layer, and the TiN and Pt layers were deposited in situ in the sputtering chamber and
patterned through Ar ion beam etching (IBE). To provide a lower electrode slope, the incident ion
beam and the substrate were partially tilted (with initial and secondary substrate tilt angles of 0
and 40°). The bottom layer was then planarized with fast chemical mechanical polishing (CMP),
utilizing an ~750-nm SiO2 sacrificial layer to achieve global planarization. The middle electrode
was then partially exposed in a controlled fashion, and the remaining SiO2 layer was removed in a
CHF3 atmosphere in an inductively coupled plasma (ICP) chamber. Finally, the top crossbar layer
was deposited and patterned using a process similar to that used for the bottom layer. The top
electrode was patterned to be a few nanometres wider than the other layers to ensure complete
coverage of the exposed middle electrode.

The completed crossbar circuits were wire-bonded and mounted on a custom-printed
circuit board controlled by Agilent measurement tools. All of the electrical testing was performed
using an Agilent B1500A semiconductor device parameter analyser, an Agilent B1530A
waveform generator/fast measurement unit, and a low-leakage Agilent E5250A switch matrix. The
distribution of the ON and OFF resistances for all devices is shown in Figure S1c.

2. Algorithm for selecting optimal crosspoint conductances

The algorithm used to find the optimal crosspoint conductances is shown in Figure S2. It
involves the following steps:

Step 1: The very first step is to generate S random sets of row and column selections; these
are denoted SR and SC

±, respectively. Each selection comprises indexes of the selected 5 rows and
2 columns, and each set of indexes is unique. The typical value of S is 10,000. The values of μI, σI,
and ΔI, which are used in the next step, are initialized to the empirically found values of 5 µA, 0.5
µA, and 50 nA, respectively.

Step 2: In this step, S values of I+ and I-, i.e., pairs of desired currents for the selections,
are randomly generated. For each selection, this is achieved by first randomly choosing (with 0.5
probability) which current of the differential pair will be directly generated and then sampling its
value I from a Gaussian distribution with specific μI and σI. Next, the other value of a current pair
is sampled from I + ΔI + 4.5 [µA] × Beta(2, 25), where Beta() is a beta distribution of the first kind
with shape parameters α = 2 and β = 25.

Step 3: The non-negative least squares optimization problem defined by Equation (3) in
the main text is solved with the help of Matlab software.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 2 of 15

Step 4: The conductances (Gs) are checked to determine that they fall within the desired,
highly nonlinear range, which is approximately 2.5 μS to 4.5 μS at 300 mV. If the condition is not
satisfied, the algorithm proceeds to step 5.

Step 5: The σI is adjusted manually, after which the steps for generating new distributions
of desirable I+ and I– and solving the optimization problem are repeated. It should be noted that
with optimal μI, σI, and ΔI, which are empirically found during fine-tuning of the algorithm, the
adjustment step was rather rare in all experiments.

Supplementary Figure 1. (a) Top-view SEM image of the 3D ReRAM crossbar and (b) its device stack
material layers and thicknesses. (c) Cumulative histogram for the top (blue) and bottom (red) devices’ ON
and OFF state resistances measured at 0.3 V.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 3 of 15

Supplementary Figure 2. An algorithm for selecting crosspoint device conductances.

3. Security metrics for PUF primitives

The most common operational metrics in security primitives are based on Hamming weight
and on the inter- and intra-instance Hamming distance among output vectors. Uniformity (UF) and
diffuseness (DF) are used to assess the randomness of a single PUF instance. In particular, UF is
a measure of a balance in the PUF response. The uniformity of the K-bit-long binary response
(vector B) is simply defined as a normalized Hamming weight

 UF(𝐵) ≡ ∑ 𝑏 , (S1a)

where bki
 is a k-th bit of the i-th response Bi. The average uniformity is

 〈UF〉 ≡ ∑ UF(𝐵), (S1b)

where C is the total number of challenge-response pairs. The ideal value of UF is 0.5, which
represents a perfect balance between the possible responses, i.e., the same number of “0”s and “1”s
in the case of a binary response.

Diffuseness (DF) is a measure of the extractable unique information in a given PUF
instance.2 This metric is used to evaluate the dissimilarity among response vectors corresponding
to different challenge vectors from the same PUF instance. The diffuseness between the i-th and
the j-th responses is defined as the intra-PUF normalized Hamming distance d

 DF(𝐵 , 𝐵) ≡ d(𝐵 , 𝐵). (S2a)

5: Adjust σI and ΔI

2: Generate random
distributions (S values)

of I-, I+

Start

3: Solve optimization
problem (3)

4: Gs
in the permissible

range?

Yes No

1: Generate C random
sets of {SR, SC

+, SC
-};

Select σI, μI, ΔI

End

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 4 of 15

The average diffuseness accounting for all possible pairwise comparisons is therefore

〈DF〉 ≡
()

∑ ∑ d(𝐵 , 𝐵). (S2b)

Another important metric is uniqueness (UQ), a measure of dissimilarity between response
vectors from different PUF instances to the same input challenge. Uniqueness between two
response vectors to the same i-th challenge from the l-th and p-th PUF instances is defined as the
inter-PUF normalized Hamming distance:

 UQ(𝐵 , 𝐵) ≡ d(𝐵 , 𝐵). (S3a)

The uniqueness for the i-th challenge averaged over all possible pairwise comparison of PUF
instances is

 〈UQ(𝐵)〉 ≡
()

∑ ∑ UQ(𝐵 , 𝐵), (S3b)

whereas uniqueness averaged over all responses is

 〈UQ〉 ≡ ∑ 〈UQ(𝐵)〉, (S3c)

where P is the total number of PUF instances. In many security applications, the responses to the
same challenge from different PUF instances should be highly dissimilar; thus, the ideal value for
UQ is 0.5.

Bit-error-rate (BER) is the measure of PUF reliability and is defined as the normalized
intra-trial Hamming distance between responses from the same PUF instance to the same input
challenge vectors over different trials. PUF reliability is often evaluated by including additional
external factors such as variation in the external temperature or the power supply voltage with
time. A typical way of measuring BER is with respect to the initial sample, say at time t = 0, i.e.,

 BER(𝐵) ≡ ∑ d(𝐵 (𝑡), 𝐵 (0)), (S4a)

where T is the total number of samples. The averaged bit-error-rate over all responses is therefore

 〈BER〉 ≡ ∑ BER(𝐵), (S4b)

It is useful to note that if the responses are completely uncorrelated random binary vectors
of length K, whose bits are generated with 0.5 probability, UF, DF, and UQ follow normal
distributions with 0.5 average and 0.25/𝐾 standard deviation (i.e., 0.0625 for K = 64).

The diffuseness is sometimes reported for averaged Hamming distances between a given
response and all other responses, i.e.,

 〈DF(𝐵)〉 ≡ ∑ DF(𝐵 , 𝐵) (S5)

It is easy to show that, for random binary vectors the average value of <DF(Bi)> over all responses
is still 0.5, whereas its standard deviation is 0.25/(𝐶𝐾), i.e., the standard deviation is much

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 5 of 15

lower than that reported for DF(Bi, Bj). Similarly, the average and standard deviation for < UF(Bi)>
defined by Eq. S3b are 0.5 and 0.5/(𝐾𝑃(𝑃 − 1)), respectively.

4. Supplementary results for PUF characterization

Figure S3a-c shows additional results for the tuning experiment shown in Fig. 3 of the main
text. For example, Figure S3c clearly shows that both the median and the standard deviation of the
nonlinearity of individual devices increase with increasing bias. Figure S3d shows the distribution
of Hamming distances (i.e., the uniqueness) between responses to the same challenges without
retuning the weights; the responses were measured at 200 mV and at the specified voltage bias.
This figure highlights the value of nonlinearity as an additional source of entropy in the PUF
design. (Note that the results shown in Figure S3d are essentially more detailed statistics calculated
according to Eq. S3b, though for only a few pairs of voltages, compared to the results shown in
Figure 3f of the main text, which represent only the averages of the HD distributions calculated
using Eq. S3c.) To evaluate the stability of the conductance distribution, the device conductances
were re-measured in a bit-error-rate experiment after a 30-day period of thermal stress at 90 ᴼC.

 Supplementary Figure 3. (a) The average conductances (measured at 300 mV) for the devices in a specific
row and column after the tuning procedure. (b) Figure 3c data (nonlinearity factor) shown as a linear plot.
(c) Box plots of devices’ nonlinearity for all 200 memristors in the crossbar. Here, boxes show the 25-75
percentile area, while the bars signify the 10-90 percentile range. (d) Distributions of intra-bias responses’
uniqueness (UQ) between responses to the same challenges without re-tuning of the weights, measured at
200 mV and the specified voltage bias.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 6 of 15

Supplementary Figure 4. (a) Maps and (b) histograms of relative changes in conductance measured at 200
and 600 mV (top and bottom panels, respectively) after a 30-day period following the thermal stress tests
at 90 ᴼC.

5. Performance and energy efficiency estimates

The demonstrated resistive crossbar circuit has fairly large feature sizes, much larger than
those of recent state-of-the-art CMOS work implementations (Table S3). To conduct a meaningful
comparison with prior work, we have estimated the performance and energy efficiency of the
proposed security primitive assuming 55-nm lateral dimensions of the memristors. Note that much
smaller, ~10-nm metal-oxide memristors based on similar material stacks have been demonstrated
to have excellent retention and analogue properties,3 and, in fact, some of the device properties
actually improve upon scaling. For example, the dynamic range (ON/OFF current ratio) is typically
inversely proportional to the device area for filamentary devices due to the reduction in leakage
current. Furthermore, in our comparison, we consider a more practical basic building block with
M = N = 100 and m = n = 20 and assume that 10 response bits are generated in parallel.

According to our previous work on mixed-signal vector-by-matrix multipliers,4 the area,
maximum settling time and power consumption of a single differential sensing circuit
implemented in a 55-nm process are 10 µm2, 4 ns, and 2.5 µW, respectively, assuming that the
maximum and minimum input currents are 1 µA / 100 nA. The current assumptions are justified

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 7 of 15

since the minimum OFF current is reduced by a factor of ~40 upon scaling and because half of the
read current would be contributed by approximately 20 selected devices and the other half by
unselected devices and also given that the device conductances are balanced according to the
optimization algorithm. (Additionally, note that the sensing circuit for the mixed-signal vector-by-
matrix multiplier, which was implemented in a conveyor-like style, has much stricter requirements
for output nonlinearity and driving capabilities; hence, there are some reserves for further
optimization.) The dynamic energy for the charging/discharging crossbar circuit is estimated
assuming a rather pessimistic 1 fF/ 1 µm crossbar line capacitance,5 which results in ~10 fJ per
bit. Neglecting the contributions from other circuitry, the total area, latency, and energy
consumption for generating one output bit are ~20 µm2, < 5 ns, and ~20 fJ, respectively,
significantly better than the values achieved by state-of-the-art CMOS implementations, even at
more aggressive CMOS nodes (Table S3).

6. Multilayer PUF network

Figure S5a shows the general architecture of the proposed 2-level PUF circuit. The
challenge specifies all selections that are applied to the PUF input, potentially in several steps (see
below) to generate a K-bit output response. In particular, selections are first applied to NL1
primitive security blocks in the first layer of the PUF. The output of these blocks is used to generate
a feed-forward (hidden) challenge that essentially consists of scrambling the data by passing it via
a nonlinear transfer function with the goal of increasing resilience against reverse-engineering of
the PUF circuit. The feed-forward challenge then specifies selections to the second layer with NL2

blocks, which in turn produces the PUF output. To increase the number of bits in the feed-forward
challenge (and the output), its data can be generated in several steps, e.g., by sequentially applying
a number of selections, as discussed in the main text. (The scrambling can also be performed at
the input and output to further strengthen the PUF’s resilience. Additionally, the PUF circuit may
contain dummy blocks that do not contribute to the PUF response and only scramble the network’s
power profile.)

As a specific example, let us consider single-bit-output primitive blocks with M = 20, N =
10, m = 10, n = 4, and NB = 4 that are used in 2-level PUF with NL1 = NL2 = 8, and K = 64. Row
and column selections can be specified with bit vectors, so that M + N + log2NB = 32 bit input is
sufficient to specify a unique selection for a single block (assuming there are no permutations in
the columns). Let us also assume that unique selections are applied to the first-layer blocks and
that the selections are the same for the second-layer blocks, i.e., the same feed-forward challenge
is applied to all blocks at once. In this case, K / NL2

 = 8 steps are required to generate all 64 output
bits, which would require precomputing (M + N + log2NB) K /NL2 bits of feed-forward challenge.
Because NL1 bits of feed-forward challenge are generated at once, the total number of sequential
steps to be performed in the first layer is (M + N + log2NB) K / (NL1 NL2) = 32. The effective length
of the PUF input, comprising all selections that are applied sequentially, each of which is (M + N
+ log2NB) NL1 bits long, is therefore (M + N + log2NB)2 K / NL2 = 8,192 bits. (Note that the described
example is not intended to be optimal but is rather introduced as a means of presenting the details
of the key operations that would be performed in a more complex PUF design. For example, PUF
architecture can be optimized by generating multiple bits at once from one block. Evaluating these
techniques and understanding the trade-offs between robustness to various attacks and the
complexity of the PUF circuit are very important future goals.)

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 8 of 15

Supplementary Figure 5. More practical memristor PUF architectures. (a) Top-level architecture. In the
most general case, the inputs, feed-forward challenge, and outputs can be subject to “scrambling”, i.e.,
certain nonlinear transfer functions, to improve the robustness and security of the PUF. (b) Measured
security metrics for the PUF architecture with NL1 = 10, NL2 = 1 and NB = 8 multi-bias selection scheme.
(c-d) PUF (NL1 = 10, NL2 = 1) with quaternary response. Panel (c) shows an example of one hundred 64-
element-long quaternary response keys; (d) shows the experimentally measured results.

Finally, to verify the operation of such an architecture, we have experimentally
demonstrated the functionality of a simplified 2-level PUF network. Two slightly different
implementations were considered. In both cases, M = 20, N = 10, m = 5, n = 2, NL1 = 10, NL2 = 1,
and a 64×10-bit feed-forward challenge was used. The locations of the selected rows are binary
encoded by pairs of bits in a 10-bit portion of a feed-forward challenge such that the first two bits
determine the location of the first selected row among the first four rows of the crossbar, the second
pair determines the location of the second selected row among the next four rows of the crossbar,
and so on. One column is always selected in the left half of the crossbar, and another column is
selected from the right half. The particular locations are calculated by adding the five least
significant bits of the 10-bit portion of the hidden challenge for the first column and the five most
significant bits for the second one.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 9 of 15

Figure S5b-d shows the experimental results for uniformity and bit error rate for the two
considered cases, measured by collecting 500 64-bit and 500 128-bit responses, respectively, for
randomly selected mutually exclusive challenges. In the first case, a sequence of 64 selections with
each input selection applied simultaneously to all 10 first-layer blocks was used to generate a 64-
bit response. Eight different voltages (NB = 8) between 200 mV and 600 mV were used to bias the
blocks; in particular, one randomly selected voltage level was used to bias all blocks in the first
layer, and another randomly selected voltage level was used to bias the second-layer blocks. The
selected voltages were unique for each input challenge. The only difference in the second
considered case is that for each 10-bit portion of a hidden challenge, two output bits were generated
by the second-layer block by first measuring an output at 200 mV and then at 600 mV.

7. Predictability and robustness to machine learning attacks

To investigate the robustness of the demonstrated basic building block with respect to
modelling attacks, we have performed a series of additional tests using two sets of data. The first
set of data corresponds to one of the tuned distributions discussed in the main text; the second,
which is representative of a suboptimally tuned PUF, represents data that we collected at the earlier
stages of our project. The two data sets consist of, respectively, 354,000 and 76,800 measured
responses to random unique challenges. For simplicity, in all of these tests we have assumed that
each challenge is encoded by 30 bits. “1” bit values encode the positions of five selected rows in
the upper 20 bits and two selected columns in the lower 10 bits. (Obviously, such a format is
sparse, and not all 30-bit numbers correspond to a valid challenge. A dense encoding would
require only ceiling[log2CMAX]= 20 bits.)

A. Correlations

 In our first test, we probed for possible bias in the output by checking the uniformity of the
response when a particular bit of the challenge bit vector is fixed (Fig. S6a). The uniformity is
close to the ideal (50%) for both experiments, though the results are visibly somewhat worse for
the second data set (Fig. S6b). These results, however, do not exclude the possibility of more
complex correlations involving multiple input bits. Such correlations can be better captured by
modelling PUF with binary classifiers based on a feed-forward neural network. Figure S7 shows
the preliminary results of such modelling using a multilayer perceptron with 30 inputs, 1 output,
and two 250-neuron hidden layers. The network was trained using a random sample of measured
input-output data of specified size and then checked against 6,000 (mutually exclusive) randomly
selected challenge response pairs. The results show that the output of the near-optimal PUF is
difficult to predict even when the training data represent more than 10% of the total number of
challenge response pairs. On the other hand, the classification accuracy of the test data for the
suboptimal PUF improves significantly when the size of the training set is increased. However,
even for the suboptimal PUF, using such a large training set for a more practical PUF network
(e.g., with much larger CMAX as discussed earlier in Sections 5 and 6) would be completely
unfeasible. Indeed, it is natural to expect that, for a more realistic scenario in which only a very
small fraction of the challenge-response pairs is used as the training data, the classification
accuracy would be close to the ideal 50% (Fig. S7b). Additionally, note that the results confirm
that nonlinearity improves robustness slightly; we expect that the improvement will be more
pronounced for more complex PUFs.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 10 of 15

Supplementary Figure 6. The distribution of response uniformity when a specific bit of the challenge is
fixed to a value of either “1” (selected) or “0” (unselected) for two sets of measured data (at 0.2 V voltage
bias), corresponding to (a) near-optimal and (b) suboptimal PUF instances. For example, the first black/red
column shows the fraction of the total number of “1” responses with respect to the total number of responses
for all measured challenges in which the first bit is set to “0”/ “1”.

B. Output randomness

We further evaluated the randomness of the near-optimal PUF using an NIST statistical
test suite6 and a long short-term memory (LSTM) neural network model.7 In particular, for the
first test, the output bits were partitioned into 7000-bit sequences and used to run 15 different NIST
benchmarks, each of which was repeated 50 times. (“Universal”, “Random excursions”, and
“Random excursions variant” tests were excluded due to insufficient data.) The results, which are
shown in Table S1, confirm that the generated responses successfully pass NIST randomness tests,
i.e., that the probability value (P-value) exceeds 0.01 and that the uniformity is greater than
0.0001.6

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 11 of 15

Supplementary Figure 7. Robustness to machine learning attacks for (a) near-optimal and (b) suboptimal
PUF simulated utilizing a 30×250×250×1 multilayer perceptron classifier. The markers denote the average
classification accuracy over 10 runs; the thickness of the lines for the test data specifies two standard
deviations. All simulation results were obtained with the Matlab module “traingdx” using a hyperbolic tanh
activation function in all layers with momentum and adaptive learning rate and the following parameters:
0.01 learning rate, 1.05 / 0.85 ratio to increase/decrease learning rate, 0.9 momentum constant, 1e-10
minimum performance gradient, 1e-20 performance goal, 2500 training epochs, 10% validation ratio, and
10 maximum validation failures. For each training run, the network weights in all layers were randomly
initialized to values between -1 and 1.

Supplementary Table 1. Results of the NIST randomness test
 200 mV 400 mV 600 mV

Pass rate
(%)

Uniformity
of P-value

Pass rate
(%)

Uniformity
of P-value

Pass rate
(%)

Uniformity
of P-value

Frequency 96 0.935716 98 0.040108 98 0.040108
Block frequency 100 0.350485 96 0.011791 96 0.011791

Runs 100 0.971699 100 0.816537 100 0.816537
Longest run 100 0.779188 100 0.350485 100 0.350485

FFT 98 0.350485 100 0.851383 98 0.851383
Non-overlapping

template
97.30

All ≥
0.0001

95.95
All ≥

0.0001
100

All ≥
0.0001

Overlapping
template

98 0.616305 100 0.013569 96 0.013569

Linear
complexity

96 0.816537 96 0.534146 100 0.534146

Serial 100 0.289667 98 0.851383 96 0.851383
Serial 100 0.137282 100 0.616305 96 0.616305

Approximate
entropy

100 0.289667 98 0.699313 100 0.699313

Cumulative sums
- forward

96 0.494392 96 0.383827 100 0.383827

Cumulative sums
- backward

96 0.739918 98 0.534146 100 0.534146

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 12 of 15

We then evaluated the response predictability for the near-optimal data set using the LSTM
architecture proposed by Graves7 (Fig. S8), which is a special case of a recurrent neural network
that is capable of handling long-range dependencies in general-purpose sequence modelling tasks.
The implemented network is based on two LSTM layers and ReLU as an activation function.
Features with size of 128 extracted by the two LSTM layers are fed into two fully connected layers
with sigmoid and softmax functions, respectively, as activation functions. We employed the model
in Keras 2.0.6 with Tensorflow 1.1.0 backend. Three network configurations were used to evaluate
the response sequence (Table S2). The measured response data were tested in such a way that N
adjacent bits were considered as input, and the immediately following bit was treated as the label
(Fig. S8a). The input samples were shifted by S = 3 bit positions.

 The near-ideal unpredictability of the output sequence for the three training sets and the
output dimensions configurations further point to the suitability of the proposed approach for
implementing highly secure and resilient architectures. Nevertheless, further investigation of PUF
circuits’ vulnerabilities to advanced deep-learning algorithms is important future work.

Supplementary Figure 8. Modelling with long short-term memory neural network. (a) Input data
preparation and (b) LSTM architecture. The Python code utilized for LSTM simulations is available at
https://github.com/RMITnano/PUF-LSTM.

8. Experimental characterizations and test data

All the evaluated experimental datasets have been uploaded to
https://www.ece.ucsb.edu/~strukov/papers/2018/PUFdata/ for public access. Therein, the data are
categorized with respect to the corresponding evaluation metrics, along with instructions for
extraction and evaluation.

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 13 of 15

Supplementary Table 2. Machine learning attack results using the LSTM-Dropout-LSTM-Dense-Dense-
Softmax network.

9. Prospects for improving BER

Key generation applications require very repeatable and reliable PUF operation, and hence
various BER boosting techniques are typically employed to improve raw BER of PUF’s basic
building blocks [22]. For example, a three-step approach involving temporal majority voting,
burn-in hardening and dark-bit masking was utilized to reduce the BER from 25% to 0.98% in
CMOS-based PUFs [23].

The high density, low latency, and high throughput of our approach should allow for a wide
range of options for improving BER. For instance, Figure S9 shows the preliminary results for two
majority voting approaches. In the first case, the same challenge is applied three times and the
output bit is determined by the majority among three bits. This approach would help against
occasional errors. In the second approach, which could tolerate completely unreliable challenges,
3 bits are first computed by applying different challenges. A single output bit is then determined
by majority voting. The results show that even the most rudimentary error correcting techniques
can reduce the BER significantly. We expect that more advanced error correcting codes, which
could be applied to larger groups of bits, and other techniques such as masking of bad memory
cells and remapping around them, would enable sufficiently low BER for secret key generation
applications.

Supplementary Figure 9. Comparison between the original and improved BER results for the worst-case
16 kb data (Fig. 3e of the main text) using simple temporal and spatial majority voting techniques.

Training sequence length Output dimensions Predictability (%)

301 LSTM: 128, Dense: 128, 2 50.41

101 LSTM: 128, Dense: 128, 2 50.52

64 LSTM: 256, Dense: 256, 2 50.28

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 14 of 15

10. Comparison with prior work

Supplementary Table 3. Comparison of reported PUF primitives based on different technologies.

 SIM: Simulation only; S&E: Simulation based on measured device data; EXP: Experiment; TR: Temperature range; VR: Voltage range
 * Estimates assuming 55 nm process and 100×100 array with 10 output bits generated in parallel

H. Nili et al., “Programmable Hardware Security Primitives Enabled by Memristors”

Page 15 of 15

References

1 Hoskins, B. D. & Strukov, D. B. Maximizing stoichiometry control in reactive sputter deposition
of TiO2. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 35, 020606
(2017).

2 Hori, Y., Yoshida, T., Katashita, T. & Satoh, A. in IEEE International Conference on
Reconfigurable Computing and FPGAs 298-303 (2010).

3 Govoreanu, B. et al. in IEEE International Electron Devices Meeting 2013 10.12. 11-10.12. 14
(2013).

4 Mahmoodi, M. R. & Strukov, D. B. An ultra-low-energy current-mode sensing circuit enabling
POps/J analog computing. in preparation (2017).

5 Strukov, D. B. & Likharev, K. K. CMOL FPGA: a reconfigurable architecture for hybrid digital
circuits with two-terminal nanodevices. Nanotechnology 16, 888 (2005).

6 Rukhin, A. et al. Statistical test suite for random and pseudorandom number generators for
cryptographic applications, NIST special publication. (2010).

7 Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850
(2013).

8 Roel, M. Physically unclonable functions: Constructions, properties and applications. PhD
Thesie, University of KU Leuven (2012).

9 Mathew, S., Satpathy, S., Suresh, V. & Krishnamurthy, R. K. in IEEE Custom Integrated Circuits
Conference 1-4 (2017).

10 Zhang, L., Fong, X., Chang, C.-H., Kong, Z. H. & Roy, K. in IEEE International Symposium on
Circuits and Systems (2014).

11 Das, J., Scott, K., Rajaram, S., Burgett, D. & Bhanja, S. MRAM PUF: A novel geometry based
magnetic PUF with integrated CMOS. IEEE Trans. Nanotechnology 14, 436-443 (2015).

12 Majzoobi, M., Ghiaasi, G., Koushanfar, F. & Nassif, S. R. in IEEE International Symposium on
Circuits and Systems 2071-2074 (2011).

13 Konigsmark, S. C., Hwang, L. K., Chen, D. & Wong, M. D. in IEEE Asia and South Pacific
Design Automation Conference 73-78 (2014).

14 Rajendran, J. et al. Nano meets security: Exploring nanoelectronic devices for security
applications. Procs. IEEE 103, 829-849 (2015).

15 Chen, P. Y. et al. in IEEE International Symposium on Hardware Oriented Security and Trust
26-31 (2015).

16 Hu, Z. et al. Physically unclonable cryptographic primitives using self-assembled carbon
nanotubes. Nature Nanotechnology 11, 559-565 (2016).

17 Kim, J. et al. A Physical Unclonable Function with Redox-based Nanoionic Resistive Memory.
IEEE Trans. Information Forensics and Security (2017).

18 Rose, G. S. & Meade, C. A. in IEEE Design Automation Conference 1-6 (2015).
19 Uddin, M., Majumder, M. B. & Rose, G. S. Robustness Analysis of a Memristive Crossbar PUF

Against Modeling Attacks. IEEE Trans. Nanotechnology 16, 396-405 (2017).
20 Uddin, M. et al. in IEEE Computer Society Annual Symposium on VLSI 212-217 (2016).
21 Mazady, A., Rahman, M. T., Forte, D. & Anwar, M. Memristor PUF - A Security Primitive:

Theory and Experiment. IEEE Journal on Emerging and Selected Topics in Circuits and Systems
5, 222-229 (2015).

22 Kaiyuan, Y., Blaauw, D. & Sylvester D. Hardware Designs for Security in Ultra-Low- Power IoT
Systems: An Overview and Survey. IEEE Micro 37, 72-89 (2017).

23 Mathew, S. K., et al. in IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC) 278-279 (2014).

