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Abstract—In recent years, an explosion of IoT devices
and its use leads threats to the privacy and security
concerns of individual users and merchandises. As one
of promising solutions, physical unclonable function (PUF)
has been extensively studied. This paper investigates quality
of randomness in the first generation of 3D analog ReRAM
PUF primitives using measured and gathered data from
fabricated ReRAM crossbars. This study is significant as
the randomness quality of a PUF directly relates to its
resilience against various model-building attacks, includ-
ing machine learning attack. Experimental results verify
near perfect (50%) predictability. It confirms the PUFs
potentials for large-scale, yet small and power efficient,
implementation of hardware intrinsic security primitives.

Index Terms—hardware-intrinsic security primitives, In-
ternet of Things, resistive random access memories, ma-
chine learning attacks

I. INTRODUCTION

Internet of Things (IoT) products from wearables and
implants to smart supply chain have brought paramount
benefits into near all aspects of our life over the past
few decades. Since the interconnected objects may be
remotely accessed from the Internet, the accelerated pace
of IoT adoption poses increased privacy and security
concerns of individual users and merchandises [1]. As
the typical IoT devices possess a lack of sophisticated
computing capabilities, securing sensitive information
between lightweight devices or between IoT device
and trust center is an important but yet a difficult

challenge [2, 3]. Widely used traditional cryptographic
solutions, for example, advanced encryption standard
(AES) and elliptic curve cryptography (ECC), can be
used for both the integrity and the authentication of
exchanging data and messages.

IoT hardware anti-counterfeiting, integrated circuit
(IC) trust and physical tampering are also critical
tasks [4]. In 2014, defense advanced research projects
agency (DARPA) launched the supply chain hardware
integrity for electronics defense (SHIELD) program so-
licits hardware root-of-trust for IC authentication which
aims to be low-cost, energy-efficient, tiny size, resilience
to threats, and fully-fledged solutions. [5]. Hardware
security primitives such as physical unclonable function
(PUF) and true random number generation (TRNG) have
emerged as promising low-overhead security applica-
tions based on the inherent physical constraint of IoT
devices [6].

In particular, PUF is relatively new breed of crypto-
graphic primitives that gain an advantage of otherwise
disadvantageous variation in physical system manufac-
turing with the aim to produce secrets that are unclon-
able [7]. While their role in security hierarchy is still
under study, they eliminate the need to explicitly store
secrets in memory (e.g. EEPROM) and therefore are
expected to significantly improve security [8, 9]. A PUF
is, in its mathematical form, a hardware implementation



of a one-way function that maps an input (challenge) to
an ideally unique and unpredictable output (response).
A PUF should ideally be unclonable against a wide
range of adversarial attacks including: modeling, ran-
dom guessing, man-in-the-middle, wide variety of side-
channels and machine learning attacks. Recently, there
has been an increased focus on implementing hardware-
intrinsic security primitives based on inherent random-
ness in emerging electronic memory technologies.

Memory hardware such as resistive random ac-
cess memory (ReRAM) crossbars are among the most
promising alternatives for large scale memory class, due
to their relative low-cost fabrication, simple operation
(yet rich switching dynamics), and a major intrinsic,
layout-independent, variations in their switching charac-
teristics. We suggested experimentally verified ReRAM
PUF based on monolithically integrated 3D analog cross-
bar arrays and showed its robust performance in a
large-scale study [10]. Our results indicate the immense
potential of state tuning and harnessing conductance
nonlinearity in analog crossbars for reconfigurable and
secure security primitives. Herein, we present a test on
true randomness generation of these PUFs entirely based
on experimentally gathered response string of length of
352 kbits. The test has a conventional part based on
National Institute of Standards and Technology (NIST)
statistical test suite, and more deliberate evaluation of the
PUF resilience against various model-building attacks
using advanced deep learning models.
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Fig. 1. (a) Top-view scanning electron microscopy (SEM) image,
equivalent circuit and cross-sectional schematic of the 3D stacked
crossbar. (b) Current-voltage (I–V ) curves for all 2×10×10 devices
with two representative curves being highlighted. (c) PUF primitive
operation scheme. (d) Example of the tuned crossbar.

II. ANALOG RERAM-BASED PUF OPERATION

A fully passive and monolithically integrated
2×10×10 TiO2−x nm2 was employed for the ReRAM-
based PUF design (Fig. 1(a)). The top and bottom
crossbars are accessible using top electrode (TE) and
bottom electrode (BE), respectively, by sharing a middle
electrode (ME). Full details on fabrication process can
be found in Reference [11]. Individual devices show
a large dynamic range of resistance and an excellent
I–V nonlinearity. While the analog crossbars show
excellent uniformity in their switching and performance
characteristics (Fig. 1(b), the small spatial variations in
resistance across the array can be used as an effective
source of randomness. To this end, our proposed PUF
architecture (Fig. 1(c)) employs a selection scheme
that generates 1-bit response based on differential
comparison between currents passed through two sets
of selected rows/columns, each includes sneak-path
currents component through neighboring unselected
devices [12]. In this work, the PUF uses a selection
scheme with 5 rows and 2 columns.

The aim is to implement an effective one-way function
that incorporates array-scaled random spatial variations
(Fig. 1(d)), thereby complicating many side-channel
probing attacks, therefore, allows for more depend-
able operation. The significant difference between our
ReRAM PUF and a conventional CMOS-based PUF is
the additional layout-independent variation in ReRAMs.
We extract this feature by varying applied bias, Vb of
the lowest at 0.2 V to the highest at 0.6 V, which
employs device nonlinearity as an additional source of
entropy [10]. To effectively combine the contribution
of variation sources to the overall transfer function and
avoid unintentional systematic biases, all devices in the
array are programmed in a tight highly nonlinear range.

III. EVALUATION OF RANDOMNESS

In Reference [10], randomness and stability of the
analog ReRAM-based PUF against key PUF metrics
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Fig. 2. Traditional PUF performance evaluations metrics. (a) rep-
resents intra-Hamming distance (HD) measuring stability of a PUF
instance. (b) represents inter-HD showing PUF randomness measured
across multiple PUF instances.



TABLE I
MACHINE LEARNING TESTS CONFIGURATION AND PREDICTABILITY.

Configuration Training sequence length Output dimension of Predictability

LSTM–Dropout–LSTM–Dense–Dense–Softmax
301 LSTM: 128, Dense: 128, 2 50.41%
101 LSTM: 128, Dense: 128, 2 50.52%
64 LSTM: 256, Dense: 256, 2 50.28%

are exhaustively evaluated. The stability measures the
robustness of a PUF against spatio-temporal variation
which will ideally be represented as 0% (Fig. 2(a)),
while ideal 50% randomness is the highest level of
stochasticity across PUF instances (Fig. 2(b). Here, we
investigate the degree of predictability and statistical
randomness of the PUF response, utilizing a relatively
large subset of the 1-bit responses at different biases (350
kbits × 5 for 5 different biases included in the network
challenge). The PUF response sequence is subjected to
two randomness evaluations including machine learning
and statistical randomness tests.

A. Machine Learning Tests

We run predictive machine learning tests using long
short-term memory (LSTM) architecture, a special case
of recurrent neural network (RNN), capable of handling
long-range dependencies in general purpose sequence
modeling tasks [13, 14]. In this work, we used three dif-
ferent LSTM network configurations tested on random
number sequences generated from the proposed PUF as
shown in Table I. “Dense” is a fully connected layer
which all nodes are connected to all output nodes of the
previous layers, therefore, “Dense-Dense” configuration
uses two dense layers. “Dropout” randomly chooses 50%
of the previous layer’s output nodes. “Softmax” here
is the final layer of the network to obtain a vector of
normalized probabilities across the output. The results
show almost ideal level of unpredictability using three
conditions for training sequence length and output di-
mension.

B. Statistical tests

The NIST statistical randomness test suite is em-
ployed to further evaluate the random quality of the PUF
response string. NIST statistical test suit is an important
measure for randomness analysis that is often adapted
for formal randomness testing for various applications.
The test suite includes 15 different tests including two
similar tests running on different directions of bit se-
quence. In each test, the sequence is interpreted as
random if p-value is greater than significance level [15].
If the significance level α is too high or too low, then
the test may result in Type I or Type II error, therefore,

it is important to carefully design the significance level
for the appropriate test setup.

The computed p-values and successful test results are
shown in Fig. 3(a). With the significance level α at 0.01
(dotted red line), a PUF response sequence passes all 15
test (total 118 sub-tests).

We also statistically quantify the degree of random-
ness using 200× 10 kbits response sequences. The em-
pirical results then can be interpreted with two methods;
(1) the proportion of sequences that pass the statistical
test (proportion analysis) and (2) the distribution of p-
values for uniformity (uniformity analysis). The propor-
tion analysis results show the passing rate at 0.975 (the
lowest) from test number 15, linear complexity test, and
1.00 (the highest) from test number 2, block frequency
test. The distribution of p-values assessment is to ensure
a uniformity, p-valueT. For p-valueT, if it is smaller than
0.0001, which is the significance level recommended for
a uniformity test by NIST, p-values are considered as
non-uniform. Figs. 3(b)-(e) demonstrate the histograms
for the distributions of p-values, illustrating the success-
ful uniformity results obtained for the device.

Table II shows the proportion analysis and uniformity
analysis on the collected data with three different bias
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Fig. 3. NIST statistical test results. (a) shows a single sequence p-
values of total 15 tests including different numbers of sub-tests, which
are all greater than the selected significance level (α=0.01). Histograms
showing the uniformity of p-values obtained from (b) block-frequency,
(c) longest run, (d) non-overlapping templates and (e) serial sub-tests.



TABLE II
NIST STATISTICAL TEST RESULTS OF A PUF WITH THREE

DIFFERENT BIAS VOLTAGES AT 0.2 V, 0.4 V AND 0.6 V.

Bias voltage (Vb)
0.2 V 0.4 V 0.6 V

Mean rate of
97.95% 98.04% 98.35%passing sequences

Mean of uniformity
0.16 0.19 0.19(p-valueT)

voltages. In particular, the results show that increasing
the bias voltage from 0.2 V to 0.6 V by 0.2 V increment
improves the mean of passing rate from already high
97.95% to nearly ideal 98.35%. In another analysis,
mean of uniformity (p-valueT) is well above 0.0001 for
all cases. The slightly lower mean uniformity is found
at lowest bias voltage of 0.2 V. The result indicates that
the stronger I–V nonlinearity in the device attributes to
the better PUF randomness at higher bias voltages. The
feature could be beneficial since the bias voltage could
be used as one of the independent challenge parame-
ters and it also very useful against power monitoring
attacks [10].

IV. CONCLUSION

In summary, we have investigated and verified ran-
domness of our proposed analog 3D-ReRAM PUF using
two standard and advanced tests, machine learning test
and statistical test. Hence, we demonstrated its resilience
against a range of model-building and machine learning
attacks. We demonstrated near ideal unpredictability in
our deep learning test using three different networks
architectures and successful statistical evaluation using
NIST statistical test suite with near uniform distribution
of all p-values.
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