
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018 2759

High-Throughput Pattern Matching With
CMOL FPGA Circuits: Case for

Logic-in-Memory Computing
Advait Madhavan, Member, IEEE, Tim Sherwood, Senior Member, IEEE,

and Dmitri B. Strukov , Senior Member, IEEE

Abstract— In this paper, we propose a novel CMOS+
MOLecular (CMOL) field-programmable gate array (FPGA) cir-
cuit architecture to perform massively parallel, high-throughput
computations, which is especially useful for pattern matching
tasks and multidimensional associative searches. In the new
architecture, patterns are stored as resistive states of emerging
nonvolatile memory nanodevices, while the analyzed data are
streamed via CMOS subsystem. The main improvements over
prior work offered by the proposed circuits are increased
nanodevice utilization and, as a result, substantially higher
throughput, which is demonstrated by a detailed analysis of the
implementation of pattern matching task on the new architecture.
For example, our estimates show that the proposed CMOL
FPGA circuits based on the 22-nm CMOS technology and one
crossbar layer with 22-nm nanowire half-pitch allows up to
12.5% average nanodevice utilization, i.e., the fraction of the
devices turned to the high conductive state, as compared to a
typical ∼0.1% of the original CMOL FPGA circuits. This in turn
enables throughput close to 7.1 × 1016 bits/s/cm2 at ∼ 1 fJ/bit
energy efficiency, for matching of ∼ 107 250-bit patterns stored
locally on a 1 cm2 chip. These numbers are at least 2 orders
of magnitude better throughput as compared to that of other
state-of-the-art FPGA methods, and begin to approach ternary
content-addressable memory -like performance at similar CMOS
technology nodes. More generally, we argue that the proposed
concept combines the versatility of reconfigurable architectures
and density of the associative memories. It can be viewed as a
very tight symbiotic integration of memory and logic functions
for high-performance logic-in-memory computing.

Index Terms— CMOS+MOLecular (CMOL), field-
programmable gate array (FPGA), hybrid circuits, logic-
in-memory computing, memristor, pattern matching, ReRAM,
resistive switching, ternary content-addressable memory
(TCAM).

I. INTRODUCTION

RECONFIGURABLE circuits (RCs) are very efficient for
information processing tasks [1], such as image and

signal processing (e.g., filtering, edge detection, coding, and

Manuscript received September 7, 2017; revised January 16, 2018; accepted
February 17, 2018. Date of publication March 20, 2018; date of current version
November 30, 2018. This work was supported in part by RICARDO through
NSF under Grant 1730309, in part by NSF under Grant 1563935, in part by
CCF through NSF under Grant 1740352, and in part by AFOSR MURI under
Grant FA9550-12-1-0038. (Corresponding author: Dmitri B. Strukov.)

A. Madhavan and D. B. Strukov are with the Department of Electri-
cal and Computer Engineering, University of California, Santa Barbara,
CA 93106 USA (e-mail: amadhavan@umail.ucsb.edu; strukov@ece.ucsb.edu).

T. Sherwood is with the Department of Computer Science, University of
California, Santa Barbara, CA 93106 USA (e-mail: sherwood@cs.ucsb.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2809644

feature extraction [2], [3]), and string matching (e.g., in a con-
text of network intrusion detection [4]–[7], deoxyribonucleic
acid sequence matching [8], [9], database searching [10], and
network packet routing [11], [12]). The common feature in
these tasks is that they can be efficiently parallelized, and
that the same basic operation is performed numerous times
using one set of fixed data known in advance (which are
allowed to change infrequently), such as a filter template in
image processing or keyword in string matching, along with
streaming input data. In this respect, RCs offer massively
parallel, instant-specific computation customized for the needs
of the particular application, and thus potentially offer real-
time processing coupled with low-power consumption.

However, even contemporary RCs cannot provide enough
computational power for future demands. For example,
in network intrusion detection applications, deep packet infor-
mation of computer networks is compared against a known
sequence of data representing a computer virus or other
malicious content [4], [13]. In order to provide real-time
protection, the search engine should perform many compar-
isons in parallel, and simultaneously allow for updating of
virus signatures. Earlier RC implementations were adequate
to ensure a few Gbit/s/cm2-scale sustained throughput for
∼2000 100-B long patterns [4]. The throughput could be
further significantly improved by employing dynamic reconfig-
uration and customized hardware, including dedicated ternary
content-addressable memories (TCAMs) [5], [7], [13], [14].
However, even these techniques have limited benefits, largely
due to excessive reconfiguration overhead for multicontext
field-programmable gate arrays (FPGAs) [1], I/O limitations
for dynamic reconfiguration, and/or rigid inefficient struc-
ture of content-addressable memories (CAMs), and thus may
be insufficient for future needs. The deployment of faster
100-Gbit/s-scale data networks, as well as the continued
increase in the number of patterns (e.g., the number of
known viruses) makes real-time protection impossible even
for the most advanced circuit implementations with CMOS
technology.

The performance of RCs can be greatly improved
using hybrid CMOS/nanoelectronic circuits [15]–[18].
One such example is CMOS+MOLecular (CMOL) FPGA
[17], [19]–[23], where CMOL stands for CMOL scale hybrid
circuit, which was conceived to seize the density advantages
of emerging technologies, such as nanoimprint lithography
and monolithically integrated self-assembled nanodevices,

1063-8210 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4526-4347

2760 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

and to combine it with the flexibility and versatility of CMOS
technology. Most of the configuration overhead in CMOL
FPGAs, including all configuration memory and some routing
circuitry, is lifted above the CMOS plane. Logic gates are
based on a combination of nonlinear nanoscale resistive
switching devices (which are also called “memristors” [24])
and CMOS logic, which improves the aggregate density of
the logic circuitry [20], [21], [25]. In other CMOL-FPGA-like
concepts, nanoscale devices are only utilized for routing
purposes [22], [23].

Though the density advantage is significant, the nanode-
vice utilization in the previously reported works on CMOL
FPGAs [19], [21], [23], [26]–[30] is well below 1% due
to the limited benefits of utilizing high fan-in gates. In this
paper, we present a modification to the original logic struc-
ture [19], [20] and show that some information processing
tasks are uniquely suited for the high fan-in gates of CMOL
FPGA circuits. The TCAM-like cell architecture allows for a
more efficient use of memristive devices resulting in much
higher performance, while still being able to maintain the
reconfigurability, hence blending the best of both worlds.
The close proximity of the nanodevices to CMOS, by virtue
of the vertical integration, allows for synergistic interaction
between memory and computation, hence resulting in state-
of-the-art performance.

Some of the architecture details and one application study
have been reported earlier in [30]–[32]. The major contribution
of this paper is as follows.

1) A performance analysis of the proposed circuit. Our
estimates account for the sizing of CMOS circuits, which
was generally neglected in previous CMOL FPGA work,
though crucial for providing correct functionality for the
considered circuits.

2) An optimization procedure that considers architectural,
topological, and circuit-level constraints to maximize the
throughput of the proposed circuits.

3) An additional application case study.
The rest of this paper is organized as follows. In Section II,

we briefly review the background material on pattern match-
ing, the considered resistive switching devices, and CMOL
circuits. In Section III, we introduce modified CMOL FPGA
architecture. Section IV discusses two applications mapped on
a new architecture, while performance modeling results are
provided in Section V. Finally, the results are discussed and
summarized in Section VI.

II. BACKGROUND

A. Pattern Matching

At a high level, contemporary high-performance pattern
matching approaches can be divided into two groups. The
first approach makes use of the reconfigurable nature of
FPGA, exploiting the fine-grain configurability of the devices
to implement a dense pattern matching structure [1], [33]–[36].
For example, many FPGA schemes make use of the config-
urable interconnect to stream data through a series of basic
pattern matching operations performed by lookup tables inside
logic blocks (Fig. 1). Going a step further, the reconfigurable
nature of the hardware can be exploited to optimize matching

Fig. 1. Example of pattern matching circuitry, which is designed to detect two
patterns, “0011” and “1010” in data streaming along the chain of DFFs. The
bit values alongside wires illustrate a specific example of the data values in
the pipeline and resulting logic values, i.e., detection of “0011” pattern. Note
that three logic gates (2 AND and 1 OR) can be realized with one 4:1 lookup
table in the FPGA implementation.

structures for the particular set of patterns/expressions being
searched [37]–[39], e.g., through a technique analogous to
common expression elimination [4], [36] or by constructing
deterministic and nondeterministic finite-state automata for
recognition [40]–[42]. The flexibility and bit-level configura-
bility of FPGAs make them a natural platform for instance-
specific highly parallel implementations in which both
memory functions (i.e., storage of patterns and logic
operations) are performed locally. On the other hand, reconfig-
urability comes at a high price, typically with ∼ 40× larger
area and ∼ 3× longer delay as compared to custom circuit
implementations [43].

The second approach is based on TCAMs [44]–[56], which
allows bit-level comparisons of streaming data against stored
patterns in massively parallel fashion [Fig. 2(a)]. The relatively
dense structure of CAMs, which are roughly 2× sparser than
conventional static random access memories (SRAMs), allows
more patterns to be stored in the same unit of silicon as
compared to FPGA approaches. The ternary aspect of the
TCAM allows it to match do not care conditions as well. The
downside of this approach is that the long memory lines used
for matching must be charged and discharged on each and
every search cycle, even when no matches are to be found.

The principle of operation of a conventional SRAM-based
CAM is shown in Fig. 2(b). It consists of several CAM
memory cells arranged along a match line. Each CAM cell has
a dual-inverter memory element (which comprises 4 transis-
tors), and 4 match and pull-down transistors. (The read/write
circuitry of each memory cell, which is another 4 transistors,
has been left out for clarity.) Once the data have been stored
in the memory element, the search operation is initiated by
precharging the match line to a logical “1.” The data to be
searched are then presented along the search lines. Depending
upon the data stored in the memory element, on a mismatch,
there will be a clear discharge path from the match line to
ground and on a match, there will be no discharge.

Fig. 2(c) shows an SRAM TCAM cell with the ability
to store do not cares by splitting the memory cell into two,
which can now both store zeros, thereby always keeping
the discharge path off. Similar to the T/CAM cells shown
in Fig. 2(b) and (c), there were many proposals of TCAM
cell implementations with other memory technologies. For
example, Fig. 2(d)–(g) shows TCAM cells based on flash

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2761

Fig. 2. Pattern matching with CAMs. (a) General idea. (b) Example of one row of SRAM-based CAM memory implemented in OR style [14].
(c) SRAM-based TCAM memory cell [14]. (d)–(i) TCAM cells based on nonconventional memory technologies. (d)-(g) TCAM cells based on flash
memory [48], hybrid CMOS/MRAM [49], CMOS/STT-RAM [50], and CMOS/memristors [51] technologies, respectively. (i) Memristor-based implementation.

Fig. 3. Idealized I–V for bipolar memristors. (Inset: Cartoon of a crosspoint
device.).

memory [48], hybrid CMOS/magnetic random access memory
(MRAM) [49], CMOS/spin torque transfer (STT)-RAM [50],
and CMOS/memristor [51] circuits. In this paper, we consider
the implementation of TCAM cell with a pair of two
memristors [Fig. 2(i)] [30]–[32].

More recently, pattern-matching implementations were
suggested based on hyper-dimensional memory [57] and
micrometer automata processor [58], [59]. In spite of algorith-
mic differences, the operation of hyper-dimensional memory
circuit is somewhat similar to that of TCAM with the added
functionality of measuring the sense current which is repre-
sentative of the distance of the mismatched query pattern with
the stored patterns. On the other hand, automata processor
approach is more similar to FPGA computing in the ability to
perform fine grain, massively parallel operations on a stream of
input data. It is essentially a “sea-of-gates” fabric with Boolean
logic gates and counters interconnected with a reconfigurable
routing network, but is more catered toward implementations
of high-throughput nondeterministic finite-state machines.

B. Resistive Switching Devices
Resistive switching devices [24] are a key ingredient

of the proposed CMOL FPGA pattern matching circuits.
(In this paper, we also use terms “crosspoint device,”
“nanodevice,” or simply “device” to describe memristors.)
In its simplest form, a memristor consists of three layers:
top and bottom (metallic) electrodes, and a thin film of some
insulating material (inset of Fig. 3), most typically transition
metal oxide, which can undergo resistive switching [24].
Specifically, by applying a relatively large (“write”) voltage
bias (VW) across the electrodes of such a nanodevice, the thin

film can be switched reversibly between high (“ON”) and
low (“OFF”) conductive states, characterized by RON and ROFF

resistances, respectively. For properly engineered nanodevices,
the conductive state can be retained indefinitely and probed
without disturbing it by applying relatively small (“read”) volt-
age bias (≤ VR). Because of an ionic memory mechanism [24],
and a simple structure, which is conducive to aggressive
lithographic and other patterning techniques, memristors have
excellent density prospects. For example, several groups have
recently shown metal oxide memristors with nanodevice area
below 15×15 nm2 [60], [61], which is defined by the overlap
area of bottom and top electrodes.

Switching the bipolar nanodevice between high conductive
and low conductive states is accomplished by applying write
voltages of opposite polarity. For example, Fig. 3 shows
hysteretic I–V curve for idealized bipolar nanodevice for
which applying V ≥ +VW across the device would switch
it into the ON state (so-called set transition), while applying
negative voltage V ≤ −VW would switch it back (reset) to the
OFF state.

The very high density of individual memristors can be
sustained at the circuit level by employing passive crossbar
structures, which consists of mutually perpendicular nanowires
with nanodevices formed at their crosspoints. Crossbar integra-
tion imposes additional requirements for the memristors, such
as the need for low forming voltage [24]. (The forming process
is a one-time application of a relatively large voltage or cur-
rent pulse to turn an as-fabricated “virgin” nanodevice to
operational memristor.) Other major challenges of passively
integrated crossbar circuits are state disturbances of half-select
devices during write operation, sneak-path currents during read
operation, and the common problem of currents running via
half/unselected nanodevices.

Currents via unselected and half-selected devices, which are
much higher for the write operation because of larger voltage
ranges, can lead to undesirable voltage drops across nanowires.
One of the solutions to this problem is to utilize nanode-
vices with strongly nonlinear electron transport presented as
(diode-like) nonlinear I–V with threshold voltage VT for
the current flow (Fig. 3), which suppresses any unwanted
currents in the crossbar circuit [24], [62], [63]. For example,

2762 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Fig. 4. (a) Cartoon of CMOL circuits. (b) Functional partitioning of
the CMOL circuit for pattern matching applications by the area-distributed
interface (red and blue arrows), between the CMOS layer at the bottom and
passive nanowire crossbar on top.

the sneak-path is naturally cut by suppressing reverse cur-
rent for the devices with very asymmetric I–V s with
V (+)

T � VR < V (−)
T .

For simplicity, in our analysis, we assume bipolar mem-
ristors described by asymmetric idealized I–V curve with
precisely defined write voltage VW , i.e., with no device-to-
device and cycle-to-cycle variations.

C. CMOL Structure
In CMOL structures one [17], [25] or several [64]–[66]

crossbar layers are vertically integrated on top of conven-
tional CMOS circuits [Fig. 4(a)]. One of the key character-
istics of the CMOL architecture are an ability of accessing
(reading or writing) every crosspoint nanodevice from much
sparser CMOS circuitry without sacrificing crossbar integra-
tion density. The crosspoint memristors can be programmed
to either high or low resistive states, and together with the
CMOS layer create a reconfigurable fabric that can perform
information processing (i.e., pattern matching for the consid-
ered applications) and interconnect duties.

In particular, the CMOS layer is arranged as an array of
“atomic” CMOS cells [Figs. 4(b) and 5], which are con-
nected to the nanoscale crossbar circuit via an area-distributed
interface. Each cell houses CMOS circuits that provide unique
access to each of the cell’s two vias from the cell array periph-
ery, and also CMOS circuitry specific to the implemented
CMOL circuit. The nanowire crossbar is rotated with respect
to the array of atomic cells underneath, and provides high
fan-in and fan-out connectivity between them. For example,
each (output) blue via connects to a certain quasi-horizontal
nanowire, which in turn connects to multiple quasi-vertical
nanowires through crosspoint devices. These quasi-vertical
wires each connect to (input) red vias of other surrounding
cells. The rotation of the crossbar naturally breaks nanowires
into segments, and as a result, every nanowire segment is

Fig. 5. Crossbar rotation in CMOL shown for specific value of r = 3.

connected by only one via (Fig. 5). (Note that more readily
manufacturable CMOL structures, with nanowires running
strictly in vertical and horizontal directions, are also possible.
For example, the effective rotation of the nanowire array can be
implemented by adjusting positions of the cells’ vias [23] or by
using zig-zag shaped nanowires [65].)

Selection of any crosspoint device, to perform read or write
operation, is implemented with double-decoding scheme. The
first level of CMOS decoders, implemented by the peripheral
CMOS decoders and pass gates/transistor of the atomic CMOS
cells, is used to select a pair of vias, one blue and one red,
which connect to the corresponding mutually perpendicular
nanowire segments that lead to the crosspoint device in
question. The second level of decoding is implemented with
half-biasing approach, which utilizes memristor nonlinearities
in switching kinetics and electron transport to enable unique
access to the specific crosspoint device.

The angle of the crossbar rotation α depends upon several
parameters such as cell complexity, CMOS process, and pitch
of the nanowires. Specifically, assuming that Fnano and FCMOS
are the minimum half-pitch of the nanowire crossbar array and
the feature size of CMOS circuitry, respectively, and that the
side length of one atomic CMOS cell is 2β FCMOS, where
β is a parameter representing cell’s size, the CMOL topology
is described by set of equations [17]

tan(α) = 1

r
,

√
r2 + 1 = β FCMOS

Fnano
. (1)

It is also very convenient to characterize CMOL architecture
with parameter MA

MA = L − 2Fnano

2Fnano
− 1 = r2 − 1 (2)

that defines the number of atomic cells connected to
one atomic cell and is equal to the number of cross-
ings (memristors) on one nanowire segment. For example,
Fig. 7(a) shows a CMOL structure for r = 6 with its
connectivity domain highlighted, and, in particular, shows that
the given atomic cell can be connected to any of the other
MA = 36 atomic cells, including connection to itself, in its
connectivity domain via the crossbar structure.

For a fixed complexity CMOS cell in a certain process,
lowering the pitch of the nanowire allows higher density
by increasing the relative angle of the crossbar with respect
to the CMOS vias. This also explains how, while keeping
nanowire half-pitch constant, maximum crossbar density can
be preserved irrespective of the size of the atomic cell,
while only affecting its connectivity. In addition, it is worth
mentioning that the CMOL segmented crossbar structure is not
only good for high fan-in fan-out computation, but also has

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2763

Fig. 6. Proposed CMOL FPGA for pattern matching. (a) Unit cell, which
is comprised of two atomic cells, hosting CMOS DFF and pass gates. For
clarity, Schmitt trigger is not shown. (b) Equivalent circuit of one unit cell with
diode-like memristor having I–V characteristics shown in Fig. 3 suitable for
(c) linear threshold logic, or (d) diode–resistor logic. (e) Fragment of CMOL
fabric showing nanowires connected to one of the input nanowire of unit cell.
(f) Example of unit cell operation. (f) Six inputs [out of 24 total in (e)].
(g) Equivalent gate representation of pattern matching operation for the
specific pattern stored in memristors shown in (f).

a large amount of parallelism embedded in it. Two adjacent
atomic cells share a considerable portion of their connectivity
domains. These shared cells, in spite of sharing quasi-vertical
nanowires, interact with the adjacent atomic cells through
different memristors as their crosspoints lie on different quasi-
horizontal lines.

III. PATTERN MATCHING CIRCUIT ARCHITECTURE

Fig. 6 shows the proposed CMOL FPGA circuits for pattern
matching. The CMOL fabric is a uniform array of “unit” cells,
each comprised of two atomic cells. The unit cell implements
a CMOS D-flip-flop (DFF) connected via pass gates to cell’s
vias. To improve voltage margins, we assume that each unit
cell also hosts a Schmitt trigger, which is inserted between
the cell’s input vias and the input of the DFF. Note that the
DFFs’ inputs and outputs are connected to each other only via
crossbar circuit and not via CMOS subsystem.

Similar to the originally proposed circuits [19], [20], mem-
ristors at the nanowire crosspoints can be programmed to
perform logic as well as interconnect functions. In order to
configure the CMOL crossbar circuit to implement custom
logic, first, the CMOS block is disabled in all cells by
deasserting “enable” line [Fig. 6(a)]. This is equivalent to
tristating the output of the CMOS cell such that applied write
voltages do not short circuit the output of the DFF’s drivers.
As a result, any crosspoint device in the crossbar structure
can be programmed to the ON or OFF state by utilizing the

double-decoding scheme of CMOL memory. Note that unlike
the original concept discussed in [19], [20], here, we assume
that each (red or blue) via is connected with pass gates to
two select and two data CMOS lines [Fig. 6(a)]. Connecting
each via to a pair of data lines allow different voltages
to be applied independently, which is more desirable for a
half-biasing scheme, while in the original concept some of
the nanowires were always floated. Also, in principle, pass
transistors for connecting data and select lines to vias can be
utilized instead of pass gates, however, as our estimates below
show, this does not help much in reducing the cell area.

After the programming stage, logic operations are imple-
mented with diode–resistor logic formed by the ON-state
nanodevices and CMOS pass transistors [20], while the signal
restoration, inversion, and latching are performed by the
CMOS subsystem [Fig. 6(b) and (f)]. Similar to conventional
implementations, two flavors, static and dynamic, diode–
resistor logic are possible with only subtle modification of the
underlying hardware (though with a different requirement of
the nanodevices). In the static case, the cell’s input nanowires
are pulled down to the ground via pass transistor. Within the
course of a single operation, i.e., performed in one clock cycle,
the final output voltage value is determined by the resistive
divider formed by the diode–resistor logic. The dynamic case,
on the other hand, is similar to TCAM-based implementations
with the circuit operation divided into a precharge and an
evaluate phases. In the precharge phase, the cell’s input
nanowires behave like a match lines [similar to Fig. 2(i)] which
are precharged low using a pull-down transistor, while the
output nanowires are decoupled from their corresponding DFF
outputs by deasserting the pass gate inputs. In the evaluation
phase, the output enable lines are asserted which enable the
proper logic functionality of the dynamic cell by pulling the
output voltage high in the case of a mismatch and leaving it
low in the case of a match.

The specific logic functionality of each unit cell and its con-
nectivity is governed by the state of memristors connected to
its quasi-horizontal nanowire [Fig. 6(e)]. For instance, Fig. 6(f)
shows a particular example of implementing function A’B,
where signals A, B, C, and their complements are routed
from the output of the surrounding unit cells. Both true and
complementary values of the signal are available at the output
of the DFF, so that each bit of a pattern is represented by
2 memristors. Fig. 6(g) shows the equivalent custom logic gate,
which performs the exact pattern matching corresponding to
the specific pattern stored in memristors [Fig. 6(f)]. It is worth
mentioning that the state of the memristors remains unchanged
during logic operation stage, because the voltage drop across
memristors are always less or equal to VR . Also note that while
Fig. 6(f) shows matching of two 3-bit patterns, i.e., one pattern
comprised by the state of flip-flop cells and another one by the
state of memristors, the number of bits in a pattern that can
be compared by one unit cell is typically much larger (>100)
for practical values of topological parameter r .

The unit cell can be also configured to perform approximate
pattern matching when analog properties of memristors are
utilized to implement linear threshold gates [Fig. 6(c)] [67].
Such linear threshold gate can implement matching of two

2764 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Fig. 7. (a) Top view of crossbar circuit and input connectivity domain for
CMOL with r = 6, which is considered for application studies. (b) Equivalent
sea-of-gate circuit architecture. (c) Functionality of one logic tile. (a) Set of
atomic cells bounded by red lines is a physically permitted domain (of atomic
cells), while the somewhat smaller domain of unit cells surrounded by black
lines is used in mapping examples. In (b), the central tile can be connected,
i.e., directly pass output to or take inputs from, to any of the surrounding
shaded tiles. In (c), AND gate should be replaced with linear threshold gate
when analog properties of memristors are exploited.

patterns based on the Hamming distance between them and the
specific threshold for Hamming distance can be programmed
infield by setting appropriate analog resistance states of the
memristors [57], [68].

Since a unit cell consists of two atomic cells and has two
input crossbar nanowires, its connectivity domain, i.e., the
domain of atomic cells to which the given one can be con-
nected, is larger [Fig. 7(a)]. The largest unit cell connectivity
domain M is achieved by having the least overlap between
individual connectivity domains of two atomic cells compris-
ing the unit cell, and in this case M ≈ MA . For example, this
could be implemented with the blue via having contacts at the
edges of the crossbar nanowire segments as shown in Fig. 7(a),
which is achieved by choosing appropriate relative position of
vias inside the cell.

To simplify mapping of the applications to the proposed
CMOL fabric and to provide a simple abstracted view of
the logic and routing architecture, we will further use artifi-
cially smaller (than physically permissible) rectangular shaped
domains—for example, domain of 5 × 5 unit cells for topo-
logical parameter r = 6 [Fig. 7(a)]. Therefore, the proposed
CMOL FPGA architecture can be thought of as an array
of multifunctional unit cells [Fig. 7(b) and (c)]. Every unit
cell can pass its outputs to or accept inputs from any of
the unit cells in 5 × 5 connectivity domain, which is always
centered with respect to a given unit cell [Fig. 7(b)]. More-
over, as discussed above, every unit cell can be configured
to perform AND (or linear threshold functions) with nor-
mal or complimented outputs of unit cells in its connectivity
domain. Naturally, due to De-Morgan’s law and the presence
of complementary output, Boolean OR functions can also be
realized for every unit cell.

As we will show next, the patterns will be stored as the
state of memristors, some unit cells will be configured to store

Fig. 8. General idea for pattern matching with 1-D streaming data. Here,
we assume that adjacent blocks of pipeline data are shifted by one bit position
and the block length matches the pattern length.

incoming data that needs to be searched for patterns, while
the remaining unit cells will be used to process and store
data indicating successful matches [Fig. 4(b)]. In this respect,
the proposed architecture is similar to conventional TCAM
circuits. Indeed, TCAM cells are implemented with differential
pair of memristors [Fig. 2(i)], search lines are supplied from
unit cells streaming data [Fig. 2(a)], while the pattern matching
in a row of cells [Fig. 2(b)], and latching of the match
result is implemented within a single unit cell dedicated
for TCAM operation. The major advantage of the proposed
architecture, however, is very high density of TCAM-like cells
and flexible, FPGA-like allocation of unit cells for streaming
and processing the data, which can be tailored for a particular
application.

IV. APPLICATION MAPPING CASE STUDIES

A. 1-D Pattern Matching

Let us first consider 1-D stream of data pushed through a
very deep pipeline, which is representative of network intru-
sion detection, bioinformatics, network routing, and various
other string processing applications [1]. Conceptually, the idea
of pattern matching for 1-D streaming data is simple (Fig. 8).
To improve throughput it is natural to perform multiple pattern
matching operations in parallel. Because of fan-out restrictions
(i.e., limited connectivity domain) pattern matching is per-
formed simultaneously with several (W) blocks of the pipeline
data as shown in Fig. 8, with U operations done concurrently
for each block. (Here, we assume that block length matches the
length of pattern being searched.) With such a scheme, the total
number of pattern matching operations performed in a given
cycle is U × W and W cycles are needed to check a certain
portion of the streaming data against all (U ×W) programmed
patterns. Therefore, it is natural to allocate (configure) some
unit cells in the homogeneous array to perform streaming
data by forming long pipelines, while others to implement
pattern matching. For simplicity, we assume that the results of
pattern matching operations are logically summed together so
that the circuit generates a single bit on the output at every
cycle. (A more sophisticated processing would be straight-
forward given universality of the unit cells and flexibility in
mapping.)

Fig. 9 shows an example of the mapping where white, green,
and blue flip-flops represent unit cells performing pattern
matching, data streaming, and processing of pattern match-
ing results, respectively. More specifically, in this example,
the streaming data are passed via two independent pipelines

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2765

Fig. 9. Example of pattern matching operations for the data streamed
via green flip flops (unit cells), with the first half of the data coming
from the top pipeline and the second half from the bottom one. The white
unit cells are programmed to match patterns “0111011111,” “1X10000X00,”
“1011001111,” and “1100110110,” while the results of pattern matching
operations are summed in a pipeline comprised by a chain of blue cells.
Here, d denotes data bit stored by a unit cell and the index for d denotes
the order of data in 1-D stream, while p denotes a pattern being matched by
a given unit cell and pair of indexes for p represents specific pattern index
within the block (out of total U patterns) and block id (out of total W blocks),
respectively—see Fig. 8. Note that the summation is performed with AND gate
based on De-Morgan’s Law.

formed by green unit cells, and four exact pattern matching
operations are performed with streaming data at each cycle by
white unit cells. The results of pattern matching operations are
summed in a pipeline comprised by blue unit cells.

In general, the largest number of bits in a pattern that
can be matched with one unit cell is (Nbit)max = M − 1.
This would correspond to the case when all unit cells in the
connectivity domain of the given one are configured to stream
data. In this case, only χ = χmin = 1/M fraction of the unit
cells are performing the pattern matching operation. At the
other extreme case, i.e., when all unit cells in the connectivity
domain are configured to perform pattern matching except for
one, χ = χmax = (M − 1)/M and Nbit = (Nbit)min = 1.
More generally, the number of bits in a pattern which can be
compared by one unit cell is

Nbit = (1 − χ)M. (3)

It is trivial to show that the largest total number of bits in
all patterns matched per one cycle (χ Nbit) is achieved when
χ = 0.5, i.e., when half of the unit cells in the connectivity
domain are configured to perform pattern matching and the
other half to stream data. (Note that this conclusion assumes
that the length of pattern is not fixed but rather a parameter
which is optimized. Also, the unit cells configured to process
the results of pattern matching are neglected in this analysis,
which is justified due to their relatively small number, at least
in our considered case.) A similar observation for balancing
streaming and processing resources has been made when
mapping network processing tasks on conventional FPGA
circuits [34].

Fig. 10. Mapping of 1-D pattern matching task to CMOL FPGA with r = 6.
(a) General mapping scheme. (b) Zoomed-in view showing mapping of the
streaming data and unit cells performing pattern matching. (c) Scheme for
getting logical summation operation of pattern matchings and data propagation
in a pipeline. (d) Relative window for pattern matching operations in the
data stream. Red arrows show schematically data movement/logical operation
performed by each type of unit cell.

Fig. 10 shows an example of one such mapping. The
streaming 1-D data are duplicated and pushed through several
pipelines. To ensure that any connectivity domains of white
cells consists of always unique and contiguous streaming data
from the green cells, the relative position of data in every sec-
ond pipeline is shifted by five positions [Figs. 9(b) 10(b)] for
the considered connectivity domain size (Fig. 7). The unit cells
that should be allocated to duplicate the streaming data are not
shown though their overhead is negligible.

Because of the limited size of the connectivity domain,
the logical summation from all of the pattern matching cells
is done in several steps. As Figs. 9 and 10(c) show, at each
cycle a particular blue cell latches the logical summation of
the values from the two nearest white cells (which hold the
results of pattern matches from the previous cycle), and one
blue cell to the left of the given one. The partial sum is fully
pipelined and propagates along a row of blue cells at the rate
of one cell position per cycle, i.e., as fast as the streaming data.
Once partial sums from different rows are propagated to the
right edge of the chip, they are summed up in the similar
fashion to get one single value. This value represents the
logical summation of all results of the comparisons performed
within the array at specific time window.

Finally, let us note that for a considered value of r = 6, each
white cell performs Nbit = 10 bit-wide pattern matching. With
such mapping, white cells in the same column are performing
matching within the same block of data at any given cycle
[Fig. 10(b) and (d)]. Therefore, the number of pattern matching
operations per block (U) is given by the number of white
cells in a column, which is roughly equal to the half of the
total number of unit cells per column. The number of different
blocks (W) is given by the number of unit cells in a row,

2766 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Fig. 11. General idea for mapping image processing tasks to the proposed
CMOL FPGA architecture.

i.e., width of the unit cell array, so that the total number of
patterns which can be matched by an array is roughly half of
the total number of unit cells in the array.

B. 2-D Pattern Matching
The main difference for mapping of image processing tasks

is that both streaming data and patterns are 2-D. For example,
in automatic target recognition (ATR) systems 128 × 128
array of 8-bit pixels is searched for potential targets which
are described by 16 × 16 binary pixel templates [36]. The
bottleneck operation in ATR algorithm is 1-bit correlations
between input image and template which has to be done
for all possible relative offsets and for rather large number
of templates. (It should be noted that contemporary ATR
systems work with much larger input and template image sizes
and higher data rate, e.g., required for hyperspectral image
processing [69].)

Naturally, a correlation operation which produces multibit
output value cannot be done with a single unit cell in dig-
ital CMOL FPGA circuits. On the other hand, a combined
operation of correlation with thresholding, which is effectively
an approximate pattern matching, is straightforward if unit
cell is configured to implement a linear threshold gate. Such
an operation might be sufficient for eliminating bottleneck
processing in ATR and other related image processing tasks.

Similar to the previously considered mapping scheme,
the maximum utilization is achieved with balanced number
of white and green cells (Fig. 11). Let us assume that the
connectivity domain is large enough that each unit cell per-
forms matching between streaming data of input image and
the whole template. (The proposed scheme can be extended to
the case when the domain is smaller, by performing matching
operations for the parts of the template instead.) Let us
also assume that a K × K 2-D image is pushed through a
pipeline formed by green cells, e.g., from left to right, by one
unit cell position each cycle. To perform correlation for one
template, for all possible vertical offsets in one cycle requires
programming a column of K white cells to perform matching
with the same template. Evaluation of all horizontal offsets
would just require K cycles to push data (from left to right)
past the column of a particular white cells. The next column

of white cells can be programmed to perform matching for
a second template and so on. The result of the pattern matching
operations might be summed all together and pushed to the
bottom of the array and then propagated to the right.

Many different alternative implementations are also
possible. For example, for faster processing (though sacrificing
the total number of templates) the streaming data can be
pushed by several unit cell positions in one cycle. In this case,
more than one column of white cells should be allocated per
one template, but the number of cycles to check for all possible
offsets is proportionally less.

V. PERFORMANCE MODELING

We have modeled the performance of a generic 1-D pattern
matching task and found the optimal parameters to maximize
the possible pattern matching throughput per unit area. Before
discussing the details of an optimization procedure, let us first
outline some common assumptions for the devices, diode–
resistor logic and its performance modeling while focusing
on the more promising dynamic logic counterpart of this
architecture.

A. Nanowires
The resistance of 2Fnano-long nanowire segment is approxi-

mated using Matthessian formula [70], which accounts for the
increase in the resistivity ρ due to surface scattering effects in
nanoscale wires, i.e.,

Rwire ≈ ρ
2Fnano

A (Fnano)2 ≈ 2ρbulk

A Fnano

(
1 + λ

Fnano

)
. (4)

Here, A is the relative thickness of the nanowires with respect
to its width (i.e., the cross-sectional aspect ratio), while λ is
the mean free path of the electrons.

The capacitance of 2Fnano-long nanowire segment is
approximated analytically by using the equation

Cwire ≈ ε0ε1
F2

nano

2d
+ ε0ε2

F2
nano

2d
+ A ε0ε24Fnano

+ A ε0ε2
4nano

log
[

Fnano
d + 10

] (5)

which was verified using COMSOL simulations. Here, d is
the thickness of the thin film, i.e., the distance between
two, mutually perpendicular sets of crossbar nanowires, ε0 is
vacuum permittivity, ε1 and ε2 are dielectric constants of
the nanodevices and surrounding insulator, respectively, and
a constant 10 was determined by fitting (5) to the numerical
simulations. Note that on the right-hand side of (5), the first
two terms crudely correspond to parallel plate capacitance,
the third term is the interlayer side wall capacitance, and
the last term is the side wall capacitance between crossbar
nanowires in the same layer.

In our performance analysis, we assume copper crossbar
nanowires with A = 0.1 and ρbulk = 1.7 × 10−8 �-m. Using
λ = 40 nm, (4) yields an accurate approximation for both grain
and surface scattering as reported in international technology
roadmap for semiconductors (ITRS) [71]. For capacitance
estimates, we assume ε1 = 3.9, ε2 = 2.5, and d = 5 nm,
which is representative of SiO2 memristive devices.

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2767

B. Diode–Resistor Logic
Let us assume that at least γ fraction of voltage applied

from the CMOS cell is dropped across nanodevice and at
most 1 − γ fraction is dropped on nanowire and pass gate
connecting outputs of DFF and the corresponding vias. This
can be satisfied by choosing RON and Rpass according to

RON ≥ (1 − χ)γM(M Rwire + Rpass)/(1 − γ) (6)

where the factor (1−χ)M is effectively the maximum fan out
for each output of the DFF cell (3), i.e., the largest permitted
fraction of the devices in the ON state on each of the two
output nanowires.

For dynamic logic operation, the slowest (worst case)
mismatch operation corresponds to charging via single nan-
odevice in the ON state. For the considered asymmetric I–V
characteristics, this charging time will be always faster than
that of the match operation and the worst case voltage margins
are given by

�V ≈ VR/(1 + 2M RON/ROFF). (7)

The safe margins can be in principle calculated from noise
and CMOS variations analysis [19]. Equation (7), however,
shows that such analysis can be simplified by selecting large
enough ROFF so that the margins are comparable with VR . For
example, requiring ROFF/RON > 2M , which is very reasonable
assumption as we show below, results in �V ≈ VR/2, and
provides justification of neglecting leakages via OFF state
devices in (6), as well as delay and power estimates.

In our simulations, we assume VR = 1 V and γ = 0.9.

C. Area, Delay, and Power
According to Section III-C, area of unit cell is

Acell = 2(2β FCMOS)2 ≈ 2M(2Fnano)
2. (8)

To calculate βmin, the minimum cell area is estimated similar
to [72], i.e., by counting the number of transistors in the
cell, and modeling the area of each transistor according to
its driving strength.

Specifically, out of the total 54 transistors in a cell,
we assume that there are 22 minimum-size transistors, includ-
ing those used for configuration circuits, which do not have to
support high currents because of the diode-like asymmetric
I–V characteristics of memristors. There are also 20 tran-
sistors that compose the DFF which are sized according to
3 input and 2 input NAND gates, as well as a Schmitt trigger
that is composed of 6 transistors, 2 of which are minimum
sized, 2 of size 2 and 2 of size 4. On the other hand,
we assume 4 transistors, which are used in the output drivers,
and 4 transistors of the two pass gates controlled by enable
lines (Fig. 6) are scaled up to accommodate the current driving
requirements of memristor layer for proper operation of diode–
resistor logic. For simplicity, all nonminimum-size transistors
are scaled up equally and their area is estimated as

Atran ≈ (0.5 + 0.5(Rpass)max/Rpass) × 25F2
CMOS (9)

where (Rpass)max is effective drain–source resistance of the
minimum-size transistor at the saturation for the specific

FCMOS node. Note that using Rpass = (Rpass)max in (9)
assumes that area for the minimum-size transistor is 25F2

CMOS.
For the dynamic logic, the delay is estimated as

τ ≈ 2(2MCwire + Cgate)RON (10)

where 2 MCwire is capacitance of two nanowire segments,
while Cgate is a total capacitance of CMOS circuitry at
the input of DFF, including its gate capacitance and drain
capacitances of the configuration and pull-down pass gates.
The additional factor of 2 is to account for both precharging
and evaluation phases, which is rather conservative assumption
given that precharging currents are not limited by RON value.
Note that for all studied parameters Cgate is typically much
smaller than 2 MCwire.

The average power per unit cell is dominated by the
dynamic component, for which the upper bound is evaluated
as

Pcell ≈ (2 × 2MCwire + Cgate)V 2
R/τ. (11)

Equation (11) implies activity factor of 1 for DFF’s input
and output nanowires and input CMOS circuitry, i.e., their
charging and discharging within a single clock cycle. This is
quite a pessimistic assumption given that matching events can
be assumed to be rare on average and hence outputs of all
cells configured to perform pattern matching will not change.
Still, as we show later, the total power, which should be less
than the maximum allowable power density pmax, i.e.,

Pcell ≤ pmax Acell (12)

is rarely a limiting factor for performance.
In our simulations, we assume pmax = 200 W/cm2,

and (Rpass)max = 27.3/13.3/6.6/4.6 k� and Cgate =
7.5/22.5/76.2/135 fF for the considered FCMOS =
22/45/90/130 nm nodes, respectively—all typical values
specified by ITRS [71].

D. Throughput and Energy Per Bit

Given the area of the chip Achip, the total number of cells is
Ncell = Achip/Acell, while the total number of patterns Npattern
that can be stored in memristors and compared in one cycle
is

Npattern ≈ χ Ncell. (13)

The total number of pattern bits stored in a chip is, therefore,

Ntotal = Nbit Npattern ≈ (1 − χ)χ M Achip/Acell

≈ (1 − χ)χ Achip/(8F2
nano) (14)

and the aggregate pattern matching throughput is

T = Ntotal

τ
. (15)

Another metric of interest is the consumed energy during
pattern matching operations per single bit, which is simply

Ebit = Pcell Ncellτ/Ntotal. (16)

2768 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Fig. 12. Optimal value of RON and the pattern matching throughput as a
function of driving strength for a particular case FCMOS = Fnano = 22 nm
and χ = 0.5.

E. Optimization and Simulation Results

In general, our goal is to find the maximum possible pattern
matching throughput per unit area, i.e., the largest T/Achip,
for a particular choice of mapping scenario χ and technology
feature sizes FCMOS and Fnano, by optimizing Rpass and RON.
In particular, we use a brute-force approach, by first sweeping
via broad range of Rpass values, starting with its maximum
possible value (Rpass)max. Naturally, the technology parame-
ters, mapping scenario, and Rpass impact the area of the cell
and hence all dependent topological and application mapping
parameters, i.e., r, β, βmin, Acell, MA, M, Nbit, Npattern, Ntotal
defined by (1)–(3), (13), and (14). We then sweep via realistic
(implementable) range of RON, which is constrained from
below by proper operation of diode–resistor logic defined
by (6) and (in very few cases) power budget, i.e., (11) and (12).

For a fixed technology parameters and mapping scenario,
an optimal throughput peaks at certain Rpass value and, for any
specific Rpass, always obtained using the smallest permissible
value of RON (Fig. 12). The detailed results of an optimization
for χ = 0.5 and the impact of χ on throughput are shown on
Figs. 13 and 14, respectively.

VI. DISCUSSION AND SUMMARY

To get intuition behind the optimization procedure, let us
first note that for a fixed chip area, the total number of stored
bits depends only on Fnano and χ (14), (15), so that the largest
throughput is achieved by minimizing the delay τ . In turn,
the delay, which depends on the product of RON and M , is min-
imized by tuning value of Rpass. Indeed, for relatively large
values of Rpass, the cell area weakly depends on pass transistor
scaling and decreasing Rpass results in smaller RON because
of (6). However, when scaled pass transistors start dominating
the cell area, the further decrease in Rpass is counterproductive
because of increase in M due to (1) and (2). As a result,
there is a certain optimum value of Rpass corresponding to the
smallest delay and largest throughput (Fig. 12). Interestingly,
the optimal driving strength, i.e., (Rpass)max/Rpass, is always
close to ∼ 15 for all studied cases of FCMOS, Fnano, and χ ,
at which the area of the pass gates and drive circuits is
comparable to that of the remaining circuitry in a cell.

The results of optimization as shown in Fig. 13, show
that though throughput is reaching its maximum value at
around Fnano = FCMOS, it remains relatively constant across
changes in Fnano for fixed values of FCMOS. This can be
attributed to two simultaneous factors that have opposing

effects on throughput. On one hand, increasing Fnano reduces
the size of the connectivity domain, which in turn, reduces the
value of RON, since the pass gates have to support a smaller
number of devices, and lead to faster operation speeds. On the
other hand, reducing the size of the connectivity domain
reduces the number of bits matched and hence reduces the
throughput. The simulation results also show that the through-
put is roughly proportional to 1/FCMOS. This is because
for a given Fnano, the decrease in CMOS feature size leads
to proportionally smaller connectivity factor, and, in turn,
proportionally smaller optimal values of RON.

Another interesting result from the optimization procedure
[as shown in Fig. 13(d)] is the independence of the energy per
bit metric on FCMOS. Intuitively, this means that Ebit is deter-
mined by dynamic energy of a single, 2Fnano-long segment of
the crossbar wire (match line).

Furthermore, though χ = 0.5 corresponds to the maxi-
mum number of stored pattern matching bits, as discussed
in Section IV, Fig. 14 shows that the largest throughput is
achieved with 1 − χ < 0.5. Indeed, the reduction of 1 − χ
allows a smaller RON to be supported by the same size pass
gates. This reduction in RON in turn allows for a reduction in τ
that outweighs the loss in throughput as a result of a lowering
in number of pattern matching bits (Nbit). This reduction in
1−χ is also met with a commensurate increase in the number
of streaming cells hence throughput does not drop drastically.
(Note that the further decrease in 1−χ , beyond what is shown
in Fig. 14, will eventually lead to the drop in the throughput
due to power density constraint.)

The considered values of RON and ROFF are quite realis-
tic for the most cases, which indicates the practicality for
manufacturing such circuits. For example, at χ = 0.5 and
Fnano = FCMOS, the optimal value of RON is always around
10 M� [Fig. 13(b)], while the corresponding ON/OFF ratio
from (7) and [Fig. 13(a)] is ROFF/RON ≥ 2 × 103, which
are not uncommon for memristors [24]. It should be also
noted that while the considered nanowire aspect ratio A =
0.1 is rather conservative choice, the throughput is not very
sensitive to A and would actually slightly improve further by
considering even smaller A . This is because wire resistance
is rarely a limiting factor in our optimization and A only
impacts fringe capacitance of the crossbar wires.

The maximum throughput for FCMOS = Fnano = 22 nm
and χ = 0.5 is close to 8 × 1016 bits/s/cm2 for matching
of ∼ 107 250-bit patterns, assuming practical power consump-
tion density [Fig. 13(f)]. This number compares very favorably
with the reported state-of-the-art FPGA performance (Table I).
(Note that because the largest throughput in our circuit is
always achieved at Fnano = FCMOS, we report only one
feature size for our work.) Our reported throughput vastly
exceeds FPGA only implementations and rivals state-of-the-
art TCAM based implementation such as [44] and [49].
We expect that algorithmic improvements, in particular, the use
of common subexpression elimination techniques will increase
the throughput of the proposed circuits even further.

Even more important is the fact that the proposed circuits
could potentially offer much higher pattern capacity without
any performance penalty. Because the number of storage

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2769

Fig. 13. Simulation results for the optimal value of Rpass, χ = 0.5, and specific values of FCMOS and Fnano [73]. (a) Connectivity factor of a unit cell.
(b) Optimal value of RON determined as a minimum resistance satisfying two constrains: proper operation of diode–resistor logic (6) and power density
budget (12). (c) Capacitance of a segment and the whole wire. (d) Energy per bit (which is the same for all values of FCMOS). (e) Diode–resistor logic delay
(clock cycle time). (f) Aggregate pattern matching throughput per unit area. Note that for the shown case, RON is always determined by (6).

TABLE I

PERFORMANCE OF VARIOUS PATTERN MATCHING ARCHITECTURES. (# THE NUMBERS FOR BOTH TCAM AND FPGA IMPLEMENTATIONS

ARE RATHER OPTIMISTIC. ONLY AREA OF MEMORY CELLS IS TAKEN INTO ACCOUNT FOR THE FORMER, WHILE
FPGA NUMBERS ARE ESTIMATED BASED ON THE REPORTED LOGIC UTILIZATION.)

elements in existing hardware-based pattern matchers is lim-
ited by the 2-D chip area, they must be dynamically reconfig-
ured to accommodate additional patterns that are beyond their
storage capabilities and rely on OFF-chip storage. Dynamic
reconfiguration is rather slow and very energy inefficient, thus
we expect that the throughput for a fixed area for higher
capacity pattern matching tasks will be considerably smaller
than the ideal value. On the other hand, it should be possible
to support larger bit capacity in the proposed circuits by
integrating more crossbar layers, e.g., similar to 3-D CMOL
circuits [64], [65] without large penalty in throughput.

Even though our performance analysis is somewhat sim-
plified, we believe that we accounted for the most important
factors. For example, CMOS process variations, critical for
diode–resistor logic operation can be effectively dealt with
by appropriate scaling of the CMOS transistors. Its additional
overhead, as well as additional area due to bulky programming
circuitry which might be required for memristors with large
write voltages [74] should not change much our simulation
results because of already large pass gates/drive circuit tran-
sistors for the optimal cases. Though, the dynamic logic is
susceptible to capacitive coupling noise, it should be possible

2770 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

Fig. 14. Maximum throughput as function of mapping scenario for several
values of FCMOS (similar to the ones used in Fig. 13).

to minimize its effect by balancing signal transitions. For
example, the CMOL topology and application mapping can be
further optimized to avoid Miller effects. Based on our expe-
rience with CMOL design [75] and quite large area of CMOL
cells in this paper, the area overhead of peripheral decoders
and clock distribution network should be also insignificant.
As it is evident from the choice of the optimal values of RON

[Fig. 13(b)], the dynamic power consumption of our circuits
is always well below 200 W/cm2. Our estimates shows that
the neglected dynamic power of the clock distribution network
(especially considering relatively slow cycle times at optimal
Fnano = FCMOS) and static power are also always limited to
the sub watt range.

Perhaps the most critical challenge toward practical real-
ization of the proposed circuits is that fabrication technology
for the memristive devices, especially for their passive back-
end-of-line integration, is in need of improvement. A particular
concern is memristor nonidealities, such as current fluctuations
due to drift in the memristor state and random telegraph noise,
and variations in the switching threshold voltages. One possi-
bly strategy to deal with these issues is to identify defective
devices during test stage and avoid them during application
mapping [19], [76]. On the other hand, variations in the
ON and OFF resistance states would be less problematic due to,
e.g., possibility of fine-tuning memristor conductances using
simple tuning algorithm setup. Also, though the cycling
endurance for many memristors is generally much less as com-
pared to that of volatile memories, it should be still adequate
for many FPGA applications, given that the memristor states
are only switched during reconfiguration stage and remain
unchanged during logic operation.

In summary, in this paper, we proposed new CMOL FPGA
circuits for high-throughput computation. The performance
advantage of novel circuits is mainly due to very high density
of nanoscale devices and very tight and synergetic integration
of memory and logic functions. The tight integration is enabled
by high communication bandwidth of the area-distributed
interface between the nano and CMOS subsystems, while
the synergy is due to flexible resource allocation that allows
nanodevices to be used either as a TCAM cell or to implement
programmable logic/interconnect. Though CMOL circuits are
essential for getting high bandwidth between memory and
logic subsystems, other stacking schemes with area-distributed
connectivity, such as through silicon via technology, and differ-
ent memory devices, such as flash memory might be suitable
for the proposed concept. Understanding the prospects of

using such mature and readily available device and integration
technologies is one of the important future research directions.

ACKNOWLEDGMENT

The authors would like thank R. Brayton, A. Mishchenko,
and K. K. Likharev for their useful discussions.

CONFLICTS OF INTEREST

The presented work is built upon our previous
results reported in [30]–[32]. The material from these
papers is included in Sections III and IV-A. However,
Sections IV-B, V, and VI elaborate on the new results, which
were never published before.

In particular, in this paper we present the following, for the
first time.

1) A performance analysis of the proposed circuit. Our
estimates also account for the sizing of CMOS circuits,
which was generally neglected in all previous CMOL
FPGA works but, as we show in this paper, is crucial
for providing correct functionality.

2) An optimization procedure that considers architectural,
topological and circuit level constraints to maximize the
throughput of the proposed circuits.

3) An additional application case study.

REFERENCES

[1] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation, vol. 1. San Mateo, CA, USA:
Morgan Kaufmann, 2010.

[2] Q. Gu, T. Takaki, and I. Ishii, “Fast FPGA-based multiobject feature
extraction,” IEEE Trans. Circuits Syst. Video Technol., vol. 23, no. 1,
pp. 30–45, Jan. 2013.

[3] C. Gentsos, C.-L. Sotiropoulou, S. Nikolaidis, and N. Vassiliadis, “Real-
time canny edge detection parallel implementation for FPGAs,” in Proc.
ICECS, Dec. 2010, pp. 499–502.

[4] Y. H. Cho and W. H. Mangione-Smith, “Deep network packet filter
design for reconfigurable devices,” ACM Trans. Embedded Comput.
Syst., vol. 7, no. 2, Feb. 2008, Art. no. 21.

[5] L. Tan and T. Sherwood, “Architectures for bit-split string scanning in
intrusion detection,” IEEE Micro, vol. 26, no. 1, pp. 110–117, Jan. 2006.

[6] T. N. Thinh, T. T. Hieu, V. Q. Dung, and S. Kittitornkun, “A FPGA-based
deep packet inspection engine for network intrusion detection system,”
in Proc. 9th Int. Conf. Elect. Eng./Electron., Comput., Telecommun. Inf.
Technol. (ECTI-CON), May 2012, pp. 1–4.

[7] H. Le and V. K. Prasanna, “A memory-efficient and modular approach
for large-scale string pattern matching,” IEEE Trans. Comput., vol. 62,
no. 5, pp. 844–857, May 2013.

[8] Y. Xin et al., “Parallel architecture for DNA sequence inexact matching
with Burrows-Wheeler transform,” Microelectron. J., vol. 44, no. 8,
pp. 670–682, Aug. 2013.

[9] D. Lavenier, G. Georges, and X. Liu, “A reconfigurable index FLASH
memory tailored to seed-based genomic sequence comparison algo-
rithms,” J. VLSI Signal Process., vol. 48, no. 3, pp. 255–269, 2007.

[10] Q. Zhang, R. D. Chamberlain, R. S. Indeck, B. M. West, and J. White,
“Massively parallel data mining using reconfigurable hardware: Approx-
imate string matching,” in Proc. 18th Int. Parallel Distrib. Process.
Symp., Apr. 2004, p. 259.

[11] M. B. Anwer, M. Motiwala, M. bin Tariq, and N. Feamster, “Switch-
Blade: A platform for rapid deployment of network protocols on pro-
grammable hardware,” ACM SIGCOMM Comput. Commu. Rev., vol. 40,
no. 4, pp. 183–194, Oct. 2010.

[12] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory archi-
tecture for high throughput network processors,” in Proc. 30th Annu.
Int. Symp. Comput. Archit., Jun. 2003, pp. 288–299.

[13] C. R. Meiners, J. Patel, E. Norige, E. Torng, and A. X. Liu, “Fast regular
expression matching using small TCAMs for network intrusion detection
and prevention systems,” in Proc. 19th USENIX conf. Secur., Aug. 2010,
p. 8.

MADHAVAN et al.: HIGH-THROUGHPUT PATTERN MATCHING WITH CMOL FPGA CIRCUITS 2771

[14] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE J.
Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006.

[15] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler,
“Molecular electronics: From devices and interconnect to circuits and
architecture,” Proc. IEEE, vol. 91, no. 11, pp. 1940–1957, Nov. 2003.

[16] A. DeHon, “Nanowire-based programmable architectures,” ACM
J. Emerg. Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, Jul. 2005.

[17] K. K. Likharev and D. B. Strukov, “CMOL: Devices, circuits, and
architectures,” in Introducing Molecular Electronics. New York, NY,
USA: Springer-Verlag, 2006, pp. 447–477.

[18] X. Tang, P.-E. Gaillardon, and G. De Micheli, “A high-performance low-
power near-Vt RRAM-based FPGA,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2014, pp. 207–214.

[19] D. B. Strukov and K. K. Likharev, “CMOL FPGA: A reconfigurable
architecture for hybrid digital circuits with two-terminal nanodevices,”
Nanotechnology, vol. 16, no. 6, p. 888, 2005.

[20] D. B. Strukov and K. K. Likharev, “A reconfigurable architecture for
hybrid CMOS/nanodevice circuits,” in Proc. ACM/SIGDA 14th Int.
Symp. FPGAs, 2006, pp. 131–140.

[21] D. B. Strukov and K. K. Likharev, “Reconfigurable hybrid
CMOS/nanodevice circuits for image processing,” IEEE Trans.
Nanotechnol., vol. 6, no. 6, pp. 696–710, Nov. 2007.

[22] Q. Xia et al., “Memristor-CMOS hybrid integrated circuits for recon-
figurable logic,” Nano Lett., vol. 9, no. 10, pp. 3640–3645, 2009.

[23] D. Strukov and A. Mishchenko, “Monolithically stackable hybrid
FPGA,” in Proc. Conf. Design, Autom. Test Eur., Mar. 2010,
pp. 661–666.

[24] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature Nanotechnol., vol. 8, no. 1, pp. 13–24, 2013.

[25] K. K. Likharev, “Hybrid CMOS/nanoelectronic circuits: Opportuni-
ties and challenges,” J. Nanoelectron. Optoelectron., vol. 3, no. 3,
pp. 203–230, 2008.

[26] A. M. Arafeh and S. M. Sait, “Cells reconfiguration around defects in
CMOS/nanofabric circuits using simulated evolution heuristic,” in Proc.
ISQED, Mar. 2015, pp. 581–588.

[27] W. N. N. Hung, C. Gao, X. Song, and D. Hammerstrom, “Defect-tolerant
CMOL cell assignment via satisfiability,” IEEE Sensors J., vol. 8, no. 6,
pp. 823–830, Jun. 2008.

[28] Z.-L. Pan, L. Chen, and G.-Z. Zhang, “Efficient design method for cell
allocation in hybrid CMOS/nanodevices using a cultural algorithm with
chaotic behavior,” Frontiers Phys., vol. 11, no. 2, p. 116201, Apr. 2016.

[29] S. M. Sait and A. M. Arafeh, “Cell assignment in hybrid
CMOS/nanodevices architecture using Tabu search,” Appl. Intell.,
vol. 40, no. 1, pp. 1–12, Jan. 2014.

[30] D. B. Strukov, “Hybrid CMOS/nanodevice circuits with tightly inte-
grated memory and logic functionality,” in Proc. Nanotechnol., vol. 11.
2011, pp. 9–12.

[31] F. Alibart, T. Sherwood, and D. B. Strukov, “Hybrid CMOS/nanodevice
circuits for high throughput pattern matching applications,” in Proc.
NASA/ESA Conf. Adapt. Hardw. Syst. (AHS), Jun. 2011, pp. 279–286.

[32] A. Madhavan and D. B. Strukov, “Mapping of image and network
processing tasks on high-throughput CMOL FPGA circuits,” in Proc.
IEEE/IFIP 20th Int. Conf. VLSI Syst.-Chip (VLSI-SoC), Oct. 2012,
pp. 82–87.

[33] B. Schmidt, Bioinformatics: High Performance Parallel Computer
Architectures. Boca Raton, FL, USA: CRC Press, 2010.

[34] Z. K. Baker and V. K. Prasanna, “Time and area efficient pattern
matching on FPGAs,” in Proc. FPGA, 2004, pp. 223–232.

[35] R. Tessier and W. Burleson, “Reconfigurable computing for digital
signal processing: A survey,” J. VLSI Signal Process., vol. 28, nos. 1–2,
pp. 7–27, May 2001.

[36] K.-N. Chia et al., “Configurable computing solutions for automatic target
recognition,” in Proc. IEEE Symp. FPGAs Custom Comput. Mach.,
Apr. 1996, pp. 70–79.

[37] J. Yang, L. Jiang, Q. Tang, Q. Dai, and J. Tan, “PiDFA: A practical
multi-stride regular expression matching engine based On FPGA,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–7.

[38] Y.-H. Yang and V. Prasanna, “High-performance and compact architec-
ture for regular expression matching on FPGA,” IEEE Trans. Comput.,
vol. 61, no. 7, pp. 1013–1025, Jul. 2012.

[39] N. L. Or, X. Wang, and D. Pao, “MEMORY-based hardware archi-
tectures to detect ClamAV virus signatures with restricted regu-
lar expression features,” IEEE Trans. Comput., vol. 65, no. 4,
pp. 1225–1238, Apr. 2016.

[40] H. Kim and K.-I. Choi, “A pipelined non-deterministic finite automaton-
based string matching scheme using merged state transitions in an
FPGA,” PLoS ONE, vol. 11, no. 10, p. e0163535, 2016.

[41] H. J. Kim, “A failureless pipelined Aho-Corasick algorithm for FPGA-
based parallel string matching engine,” in Information Science and
Applications. Berlin, Germany: Springer, 2015, pp. 157–164.

[42] X. Wang and D. Pao, “Memory-based architecture for multicharac-
ter Aho–Corasick string matching,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 1, pp. 143–154, Jan. 2017.

[43] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[44] J. Li et al., “1Mb 0.41 μm2 2T-2R cell nonvolatile TCAM with two-
bit encoding and clocked self-referenced sensing,” in Proc. Symp. VLSI
Circuits (VLSIC), Jun. 2013, pp. C104–C105.

[45] S. Matsunaga et al., “Fully parallel 6T-2MTJ nonvolatile TCAM with
single-transistor-based self match-line discharge control,” in Proc. Symp.
VLSI Circuits (VLSIC), Jun. 2011, pp. 298–299.

[46] Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A resistive TCAM accelerator
for data-intensive computing,” in Proc. Micro, Dec. 2011, pp. 339–350.

[47] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-DIMM:
Associative computing with STT-MRAM,” ACM SIGARCH Comput.
Archit. News, vol. 41, no. 3, pp. 189–200, 2013.

[48] T. Hanyu, N. Kanagawa, and M. Kameyama, “Non-volatile one-
transistor-cell multiple-valued cam with a digit-parallel-access scheme
and its applications,” Comput. Elect. Eng., vol. 23, no. 6, pp. 407–414,
1997.

[49] S. Matsunaga et al., “Standby-power-free compact ternary content-
addressable memory cell chip using magnetic tunnel junction devices,”
Appl. Phys. Exp., vol. 2, no. 2, p. 023004, 2009.

[50] W. Xu, T. Zhang, and Y. Chen, “Design of spin-torque transfer mag-
netoresistive RAM and CAM/TCAM with high sensing and search
speed,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 1,
pp. 66–74, Jan. 2010.

[51] K. Eshraghian, K.-R. Cho, O. Kavehei, S.-K. Kang, D. Abbott, and
S.-M. S. Kang, “Memristor MOS content addressable mem-
ory (MCAM): Hybrid architecture for future high performance search
engines,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19,
no. 8, pp. 1407–1417, Aug. 2011.

[52] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-
addressable memory (TCAM) based on 4T static storage and including
a current-race sensing scheme,” IEEE J. Solid-State Circuits, vol. 38,
no. 1, pp. 155–158, Jan. 2003.

[53] H. Noda et al., “A cost-efficient high-performance dynamic TCAM
with pipelined hierarchical searching and shift redundancy architecture,”
IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 245–253, Jan. 2005.

[54] T. Kusumoto, D. Ogawa, K. Dosaka, M. Miyama, and Y. Matsuda,
“A charge recycling TCAM with Checkerboard Array arrangement
for low power applications,” in Proc. IEEE Asian Solid-State Circuits
Conf. (A-SSCC), Nov. 2008, pp. 253–256.

[55] Y.-D. Kim, H.-S. Ahn, S. Kim, and D.-K. Jeong, “A high-speed range-
matching TCAM for storage-efficient packet classification,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 56, no. 6, pp. 1221–1230, Jun. 2009.

[56] J.-S. Wang, H.-Y. Li, C.-C. Chen, and C. Yeh, “An AND-type match-
line scheme for energy-efficient content addressable memories,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2005,
pp. 464–610.

[57] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in Proc. HPCA, Feb. 2017,
pp. 445–456.

[58] I. Roy, A. Srivastava, M. Nourian, M. Becchi, and S. Aluru, “High
performance pattern matching using the automata processor,” in Proc.
IEEE Int. Parallel Distrib. Process. Symp., May 2016, pp. 1123–1132.

[59] K. Zhou, J. Wadden, J. J. Fox, K. Wang, D. E. Brown, and K. Skadron,
“Regular expression acceleration on the micron automata processor: Brill
tagging as a case study,” in Proc. IEEE Int. Conf. Big Data (Big Data),
Oct./Nov. 2015, pp. 355–360.

[60] B. Govoreanu et al., “10 × 10nm2 Hf/HfOx crossbar resistive RAM with
excellent performance, reliability and low-energy operation,” in IEDM
Tech. Dig., Dec. 2011, pp. 6–31.

[61] S. Pi, P. Lin, and Q. Xia, “Cross point arrays of 8 nm × 8 nm memristive
devices fabricated with nanoimprint lithography,” J. Vac. Sci. Technol. B,
Microelectron. Process. Phenom., vol. 31, no. 6, p. 06FA02, 2013.

[62] D. B. Strukov and H. Kohlstedt, “Resistive switching phenomena in thin
films: Materials, devices, and applications,” MRS Bull., vol. 37, no. 2,
pp. 108–114, Feb. 2012.

2772 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 12, DECEMBER 2018

[63] G. W. Burr et al., “Access devices for 3D crosspoint memory,” J. Vac.
Sci. Technol. B, Microelectron. Process. Phenom., vol. 32, no. 4,
p. 040802, 2014.

[64] D. B. Strukov and R. S. Williams, “Four-dimensional address topology
for circuits with stacked multilayer crossbar arrays,” Proc. Nat. Acad.
Sci. USA, vol. 106, no. 48, pp. 20155–20158, 2009.

[65] B. Chakrabarti et al., “A multiply-add engine with monolithically inte-
grated 3D memristor crossbar/CMOS hybrid circuit,” Sci. Rep., vol. 7,
Feb. 2017, Art. no. 42429.

[66] G. C. Adam, B. D. Hoskins, M. Prezioso, F. Merrikh-Bayat,
B. Chakrabarti, and D. B. Strukov, “3-D memristor crossbars for
analog and neuromorphic computing applications,” IEEE Trans. Electron
Devices, vol. 64, no. 1, pp. 312–318, Jan. 2017.

[67] G. Ligang, F. Alibart, and D. B. Strukov, “Programmable
CMOS/memristor threshold logic,” IEEE Trans. Nanotechnol., vol. 12,
no. 2, pp. 115–119, Mar. 2013.

[68] D. Gavrilov, D. B. Strukov, and K. K. Likharev. (2017). “Capacity,
fidelity, and noise tolerance of associative spatial-temporal memo-
ries based on memristive neuromorphic network.” [Online]. Available:
https://arxiv.org/abs/1707.03855

[69] S. M. Chai, A. Gentile, W. E. Lugo-Beauchamp, J. Fonseca,
J. L. Cruz-Rivera, and D. S. Wills, “Focal-plane processing architectures
for real-time hyperspectral image processing,” Appl. Opt., vol. 39, no. 5,
pp. 835–849, 2000.

[70] C. Kittel, Introduction to Solid State Physics. Hoboken, NJ, USA: Wiley,
2005.

[71] International Technology Roadmap for Semiconductors, Semiconductor
Industry Association, 2013.

[72] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAS, vol. 497. New York, NY, USA: Springer, 2012.

[73] (2018). MATLAB Code for Optimal Throughput Calculation.
[Online]. Available: https://www.ece.ucsb.edu/~strukov/papers/2018/
pm/code.m

[74] X. Tang, G. Kim, P.-E. Gaillardon, and G. De Micheli, “A study
on the programming structures for RRAM-based FPGA architectures,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 4, pp. 503–516,
Apr. 2016.

[75] M. Payvand et al., “A configurable CMOS memory platform for
3D-integrated memristors,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2015, pp. 1378–1381.

[76] D. B. Strukov and K. K. Likharev, “CMOL FPGA circuits,” in Proc.
CDES, 2006, pp. 213–219.

Advait Madhavan (M’12) received the M.S. and
Ph.D. degrees from the Electrical and Computer
Engineering Department, University of California
Santa Barbara, Santa Barbara, CA, USA,
in 2013 and 2016, respectively.

He is currently a Postdoctoral Researcher at the
National Institute of Standards and Technology,
Gaithersburg, MD, USA. His current research
interests include novel methods for information
processing, ranging from conceptualization of
high-level architectures, analog and digital circuits

to integration with emerging technologies and chip designs.
Dr. Madhavan was a recipient of the Micro Top Pick Award in 2015.

Tim Sherwood (M’03–SM’14) is currently a Pro-
fessor of Computer Science and the Associate Vice
Chancellor for Research at the University of Cal-
ifornia Santa Barbara, Santa Barbara, CA, USA.
He specializes in the development of processors
exploiting novel technologies, provable properties,
and hardware-accelerated algorithms.

Prof. Sherwood is a seven-time winner of the
IEEE Micro Top Pick Award, an ACM Distin-
guished Scientist, winner of the UCSB Academic
Senate Distinguished Teaching Award, and is the

2016 SIGARCH Maurice Wilkes Awardee “for contributions to novel program
analysis advancing architectural modeling and security.”

Dmitri B. Strukov (M’02–SM’16) received the
M.S. degree in applied physics and mathematics
from the Moscow Institute of Physics and Technol-
ogy, Dolgoprudny, Russia, in 1999 and the Ph.D.
degree in electrical engineering from Stony Brook
University, Stony Brook, NY, USA, in 2006.

He is currently a Professor of Electrical and Com-
puter Engineering at the University of California
Santa Barbara, Santa Barbara, CA, USA. His cur-
rent research interests include different aspects of
computations, in particular addressing questions on

how to efficiently perform computation on various levels of abstraction.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

