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Abstract— In this paper, we consider distributed decision-
making over stochastic communication links in multi-agent
systems. We show how to extend the current literature on
potential games with binary log-linear learning (which mainly
focuses on ideal communication links) to consider the impact
of stochastic communication channels. More specifically, we
derive conditions on the probability of link connectivity to
achieve a target probability for the set of potential maximizers
(in the stationary distribution). Furthermore, our toy example
demonstrates a transition phenomenon for achieving any target
probability for the set of potential maximizers.

I. INTRODUCTION

Non-cooperative game theory has recently emerged as

a powerful tool for the distributed control of multi-agent

systems [1], [2]. By designing proper local utility functions

and learning algorithms that satisfy certain properties, desir-

able global behaviors can be achieved. Potential games [3]

are an important class of non-cooperative games and have

recently received considerable attention in the literature [4].

In potential games, the local utility function of the agents is

aligned with a potential function in order to achieve a global

objective through local decisions.

There are a number of learning algorithms that can guar-

antee the convergence to a Nash equilibrium for potential

games such as fictitious play [5] and joint strategy fictitious

play [6]. However, a Nash equilibrium may be a sub-

optimum outcome and not the potential maximizer. Log-

linear learning (first introduced in [7]), on the other hand,

is a learning mechanism that can guarantee convergence to

the set of potential maximizers. As a result, it has been the

subject of considerable research recently [8]. Binary log-

linear learning [8] is a variant of log-linear learning which

can further handle constrained actions sets, i.e. scenarios

where the future actions of the players are limited based

on their current action (like in robotic networks).

While considerable progress has been made for distributed

decision making using potential games, ideal communication

links are often assumed. In other words, it is typically

assumed that an agent can hear from all the other agents that

will impact its utility function. In realistic communication en-

vironments with packet-dropping stochastic communication

links, this is simply not possible. For instance, Fig. 1 shows

an example of real channel measurements. We can see that

the channel exhibits a great degree of stochasticity due to the

shadowing and multipath fading components. Thus, it is the

goal of this paper to bring an understanding of the impact of

This work is supported in part by NSF NeTS award # 1321171.
The authors are with the Department of Electrical and Computer Engi-

neering, University of California Santa Barbara, Santa Barbara, CA 93106,
USA email: tarjunm, yuanyan, ymostofiu@ece.ucsb.edu.

stochastic packet-dropping communication links on potential

games with binary log-linear learning, where each link is

properly represented with an action-dependent probability

of connectivity. By extending [8], we derive conditions on

the temperature (defined in Section II-B) and probabilities

of connectivity to achieve a given target probability (in the

stationary distribution) for the set of potential maximizers

(Theorems 3 and 4). In Section III-B, in a toy example, we

further observe a transition behavior for achieving any target

probability.

II. PROBLEM SETUP

In this section, we first introduce some basic concepts and

properties of potential games. We then review the binary

log-linear learning algorithm and the theory of resistance

trees, which we use in our subsequent analysis. Finally, we

motivate the need for considering stochastic communication

links.

A. Potential Game (see [9] for more details)

A game G “ tI, tAiuiPI , tUiuiPIu is defined by its three

components:

1) I “ t1, 2, ¨ ¨ ¨ , nu is the set of players/agents/robots;

2) Ai is the set of all the actions (choices) that agent i has.

Then, an action profile a “ pa1, ¨ ¨ ¨ , anq P A denotes

the collection of actions of all the agents, where A “
A1 ˆ ¨ ¨ ¨ ˆAn is the space of all action profiles;

3) Ui : AÑ R is the utility function of agent i.

One of the most important concepts in game theory is that

of a pure Nash equilibrium, which is defined as follows.

Definition 1 (Pure Nash Equilibrium): Consider a game

G “ tI, tAiuiPI , tUiuiPIu. An action profile aNE is said

to be a pure Nash equilibrium of the game if Uipa
NEq ě

Uipai, a
NE
´iq, @ ai P Ai and @ i P I, where a´i “

pa1, ¨ ¨ ¨ , ai´1, ai`1, ¨ ¨ ¨ , anq P A´i denotes the action pro-

file of all the agents except i and A´i “ A1 ˆ ¨ ¨ ¨Ai´1 ˆ
Ai`1 ˆ ¨ ¨ ¨ ˆAn.

As can be seen, a game has reached a pure Nash equilib-

rium if and only if no agent has the motivation to unilaterally

change its action. In this paper, we are interested in potential

games. Potential games can have broad applications in dis-

tributed multi-robot systems since they allow each robot to

make local decisions while a global objective (the potential

function) is optimized.

Definition 2 (Potential Games [3]): A game G “ tI,
tAiuiPI , tUiuiPIu is said to be a potential game with po-

tential function φ : A Ñ R if Uipa
1
i, a´iq ´ Uipai, a´iq “

φpa1i, a´iq ´ φpai, a´iq, @ ai, a
1
i P Ai, @ a´i P

A´i and @ i P I.
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As can be seen, a potential game requires a perfect

alignment between the potential function and the agents’

local utility functions. It is straightforward to confirm that

the action profile that maximizes the potential function is a

pure Nash equilibrium. Hence, a pure Nash equilibrium is

guaranteed to exist in potential games.

B. Binary Log-Linear Learning (see [8])

In several scenarios, the set of possible actions that an

agent can take is limited by its current action. For instance,

in multi-robot systems, the next possible position of an agent

is limited by its current position and velocity. Formally, we

refer to this limited set as an agent’s constrained action set

i.e., Acons
i paiq Ď Ai is agent i’s constrained action set where

ai is its current action.
Binary Log-linear learning (BLLL) is a variant of Log-

linear learning (as shown in [8]) which can handle con-
strained action sets. It is summarized as follows. At each
time step t, an agent i P I is chosen randomly (uniformly)
and is allowed to alter its action.1 All the other agents repeat
their previous actions, i.e. a´iptq “ a´ipt´1q. Agent i then
plays according to the following strategy:

p
aipt´1q
i ptq “

e
1

τ
Uipapt´1qq

e
1

τ
Uipapt´1qq ` e

1

τ
Uipâi,a´ipt´1qq

,

p
âi
i ptq “

e
1

τ
Uipâi,a´ipt´1qq

e
1

τ
Uipapt´1qq ` e

1

τ
Uipâi,a´ipt´1qq

,

where âi is an action that is chosen uniformly from the

constrained action set Acons
i paipt ´ 1qq, p

aipt´1q
i ptq is the

probability of repeating its previous action, pâi

i ptq is the prob-

ability of selecting action âi, and τ ą 0 is the temperature.

Moreover, the constrained action sets should possess the

following two properties:

Definition 3 (Reachability): For all i P I and any action

pair a0i , a
m
i P Ai, there exists a sequence of actions a0i Ñ

a1i Ñ ¨ ¨ ¨ Ñ am´1

i Ñ ami satisfying aki P Acons
i pak´1

i q,
@ k P t1, ¨ ¨ ¨ ,mu.

Definition 4 (Reversibility): For all i P I and any action

pair a0i , a
1

i P Ai, if a1i P Acons
i pa0i q, then we have a0i P

Acons
i pa1i q.
Note that Definition 3 implies that any action profile in A

can be reached in finite time steps. Definition 4 means that

each agent can go back to its previous action.

Theorem 1: (see [8]) Consider a potential game with

constrained action sets that satisfy the reachability and re-

versibility properties. BLLL ensures that the support of the

stationary distribution is the set of potential maximizers, as

τ Ñ 0.

We next introduce the concept of an asynchronous best

reply process over constrained action sets, which is a process

where each agent locally improves its own utility function

when it is its turn to alter its action.

Definition 5: An asynchronous best reply process over

constrained action sets is defined as follows. At each

time t ą 0, an agent i is randomly chosen (uniformly)

and allowed to alter its action. All other agents repeat

1Note that the selection does not require coordination among the nodes
and can be achieved through each agent using a Poisson clock [10].

their current action, i.e. a´iptq “ a´ipt ´ 1q. Agent i

then selects an action âi uniformly from its constrained

action set, i.e. âi „ unifpAcons
i paipt ´ 1qqq. It then

plays the action which maximizes its utility function:

aiptq P
�
ai P tâi, aipt´ 1qu : Uipai, a´ipt ´ 1qq “

max tUipapt´ 1qq, Uipâi, a´ipt´ 1qqu
(

.

The best reply process does not necessarily maximize the

overall potential function of the game as it may result in

a suboptimal Nash equilibrium. When τ “ 0, the BLLL

algorithm boils down to an asynchronous best reply process

on the constrained action sets. A τ ą 0 then allows each

agent to occasionally select locally suboptimal moves, i.e.

it selects an action that decreases its local utility with a

non-zero probability. These occasional suboptimal moves

are useful as they prevent the agents from converging to a

suboptimal Nash equilibrium. The BLLL algorithm can then

be thought of as a perturbation of the asynchronous best reply

process, where the size of the perturbation is controlled by

the temperature τ . This idea is formalized in Section II-C.2.

C. Resistance Trees

In this part, we briefly review the concept of resistance

trees, which we will use in our subsequent sections. We refer

the readers to [11] for a detailed discussion.

1) Resistance Trees: Let P 0 be a stationary Markov chain

defined on a state space X . We call this the unperturbed

process. The process P ε is then called a regular perturbed

Markov process if it satisfies the following conditions:

1) P ε is aperiodic and irreducible;

2) limεÑ0 P
εpx Ñ yq “ P 0px Ñ yq, @ x, y P X , where

P εpx Ñ yq and P 0px Ñ yq denote the transition

probabilities from state x to y of processes P ε and

P 0 respectively;

3) if P εpx Ñ yq ą 0, for some ε ą 0, then there

exists some Rpx Ñ yq ě 0, such that 0 ă
limεÑ0ε

´RpxÑyqP εpx Ñ yq ă 8, where we refer to

RpxÑ yq as the resistance of the transition from state

x to y.

Construct a tree T with |X| vertices, one for each state,

rooted at some vertex z, such that there exists a unique

directed path to z from every other vertex. The weight of

a directed edge from vertex x to y is given by the resistance

Rpx Ñ yq. Such a tree is called a resistance tree whose

resistance is given by the sum of the |X| ´ 1 edges that

compose it. Since P ε is aperiodic and irreducible (the first

condition of the regular perturbed Markov process), there

exists a unique stationary distribution με for a given ε.

Define pεz “
ř

TPTz

ś
rx,ysPT P εpx Ñ yq, where rx, ys is

the directed edge from vertex x to y and Tz denotes the set

of all the trees that are rooted at z. Then, we have

με
z “

pεzř
z1PX pεz1

, (1)

where με
z denotes the probability of state z in the stationary

distribution.

The stochastic potential of state z is then defined as the

minimum resistance among all the trees that are rooted at z,

i.e. γpzq “ minTPTz

ř
rx,ysPT RpxÑ yq.
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Theorem 2: (see [11]) Let P ε be a regular perturbed

Markov process of P 0 and με be its unique stationary

distribution. Then

1) limεÑ0 μ
ε “ μ0 exists,2 where μ0 is a stationary

distribution of P 0;

2) We have μ0
x ą 0 iff γpxq ď γpyq, @ y P X , where

μ0
x denotes the probability of state x in the stationary

distribution μ0.

Theorem 2 shows that the stochastically stable states (the

support of the stationary distribution μ0) are the states with

the minimum stochastic potential, i.e. μ0
x ą 0 if and only if

x minimizes γpxq.
Informally, resistance (of a transition) is a measure of how

difficult that transition is. The greater the resistance, the more

difficult (less likely) the transition. So the resistance of a

tree rooted at state x is a measure of how difficult it is

for other states to transit to x. Thus, a state with minimum

stochastic potential is a state to which it is the easiest to

get to (informally speaking) as compared to other states. We

will utilize this metaphor of difficulty in Section III-B when

explaining some of our results.

2) BLLL as a Regular Perturbed Markov process: BLLL

algorithm induces a regular perturbed Markov process with

the unperturbed process corresponding to the asynchronous

best reply process defined in Section II-B [8]. The probability

of a feasible transition a0 Ñ a1 “ pa1i , a
0

´iq (where agent i

alters its action and a0, a1 P A) is then given by

P εpa0 Ñ a1q “
1

n|Acons
i pa0i q|

ε´Uipa
1

i ,a
0

´iq

ε´Uipa1

i
,a0

´i
q ` ε´Uipa0

i
,a0

´i
q
,

where ε “ e´
1

τ . As shown in [8], the resistance of this

transition is given as Rpa0 Ñ a1q “ Vipa
0, a1q ´ Uipa

1q,
where Vipa

0, a1q “ maxtUipa
0q, Uipa

1qu.
Based on the theory of resistance trees, it can be shown

that only the action profiles that maximize the potential

function have the minimum stochastic potential [11]. This

in turn means that the stochastically stable states of BLLL

are the set of potential maximizers, as stated in Theorem 1.
D. Stochastic Communication Links

Most of the current research in the area of motion plan-

ning of multi-robot systems assumes over-simplified channel

models. For instance, it is common to assume perfect links

or links that are perfect within a certain radius. In reality,

however, communication links are best modeled stochasti-

cally. More specifically, the received channel to noise ratio

(CNR) is a multi-scale random process with three major

components: distance-dependent path loss, shadowing and

multipath fading [12]. See Fig. 1 for a real example.

In the current literature on potential games, it is assumed

that each agent is connected to all the other agents that can

impact its next step utility function for all the possible actions

in its constrained set. If the wireless channel is modeled as

a disk with a known radius, then this can be achieved by

properly designing the constrained action set. However, in the

2The perturbations effectively select one of the stationary distributions of
P 0.

case of realistic communication links, this is simply not the

case. More specifically, it is not possible for every agent to

truly evaluate its utility function as other agents with whom

it cannot communicate may be influencing it. Thus, realistic

communication links have a considerable implication for

distributed decision making using potential games. It is the

goal of this paper to bring an understanding of their impact

on BLLL and derive sufficient conditions (on link quality

and temperature) to guarantee a target probability for the set

of potential maximizers (in the stationary distribution) in the

presence of stochastic links.
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Fig. 1. Underlying dynamics of the received signal power across an indoor
route [13].

III. IMPACT OF STOCHASTIC COMMUNICATION LINKS

ON BINARY LOG-LINEAR LEARNING

In this section, we characterize the impact of imperfect

communication on the outcome of the BLLL algorithm. We

first prove that given any arbitrarily-high probability of the

set of potential maximizers, there exist a connectivity prob-

ability and temperature τ that can achieve it. We then give

an illustrative example to provide a deeper understanding of

our results.
A. BLLL with Stochastic Communication Links

Consider the case where the communication graph among

the agents is given by an undirected random graph Cpaq “
pI, Epaqq, where Epaq denotes the set of edges, i.e. the

communication links among the agents. Then, the probability

of having a link (probability of connectivity) between agents

i and j is given by pc,j,ipaq “ pc,i,jpaq “ pcpai, ajq, where

we take pc,i,ipaq “ 1, for all a P A and i P I.3 Note that we

have taken the probability of connectivity (and subsequently

the communication graph) to be action dependent to make

our analysis more general (which naturally implies a time-

varying graph). For instance, when the action of an agent

involves its position, then the probability of connectivity

becomes a function of the action profile. We assume that

the probability of connectivity of different links are inde-

pendent of each other in this paper. We further assume that

the communication graph is drawn independently in each

iteration.

As mentioned in Section II-B, in each iteration of the

BLLL algorithm, an agent is chosen randomly (uniformly)

to alter its action. Meanwhile, a realization of the com-

munication graph is drawn from the random graph Cpaq.

3Notation not to be confused with pεz , which was used in Section II-C.1.

Milcom 2015 Track 2 - Networking Protocols and Performance

1350



Let Ic,i be the corresponding realization of the set of

agents that agent i can communicate with. The probability

of realization Ic,i is given by pc,ipIc,i, aq “
ś

jRIc,i
p1 ´

pc,i,jpaqq
ś

jPIc,i
pc,i,jpaq. Note that Ic,i “ I corresponds to

the case where agent i can hear from all the other agents.

Also, since the probability of connectivity is state-dependent,

pc,ipIc,i, aq is also a function of a.

The agent then has to assess its local utility and determine

its action based on incomplete information. To represent this,

we extend the definition of the utility function Ui : A Ñ R

such that it is well defined for all Uipa|Ic,iq, @a P A,@Ic,i,

where Uipa|Ic,iq is the evaluated local utility function of

agent i given that it only communicates with agents in Ic,i.

One possibility for evaluating Uipa|Ic,iq is that the agent

ignores the impact of agents not in Ic,i. Another possible

strategy is for an agent to assume the last communicated

action for the agents it is unable to communicate with.4

In order to evaluate the impact of the stochastic com-

munication links on the learning dynamics, we start with

a temperature-dependent probability of connectivity of the

form pc,i,jpaq “
1

1`ε
mi,jpaq

, @i, j P I, @a P A, where

mi,jpaq ą 0 is a constant. Based on our assumed form,

we always have pc,i,jpaq ą 0.5. Note that for pc,i,jpaq “
pc, @a P A, @i, j P I, pc need not have this temperature-

dependent form, as we will show in our result (Theorem 4).

The probability of the transition a0 Ñ a1 “ pa1i , a
0

´iq in

the presence of stochastic communication links can then be

characterized as follows:

P ε
c pa

0 Ñ a1q “
ÿ
Ic,i

pc,ipIc,i, a
0qP ε

c pa
0 Ñ a1|Ic,iq

“
1

n|Acons
i
pa0

i
q|

ÿ
Ic,i

ε
´Uipa

1|Ic,iq`
ř
jRIc,i

mi,jpa
0q

pε´Uipa
1|Ic,iq ` ε

´Uipa
0|Ic,iqq

ś
jPIp1` ε

mi,jpa
0qq

.

It can be seen that expressing the probability of connectivity

in this fashion ensures that BLLL in the presence of stochas-

tic communication links induces a regular perturbed Markov

process with the unperturbed process as the asynchronous

best reply process (Definition 5).

We can further show that the equation above can be

expressed as shown in (2) on top of the next page, which

results in the following expression for the resistance of this

transition:

Rcpa
0 Ñ a1q “ min

Ic,i

$&
%Rcpa

0 Ñ a1|Ic,iq `
ÿ

jRIc,i

mi,jpa
0q

,.
- ,

where Rcpa
0 Ñ a1|Ic,iq “ Vipa

0, a1|Ic,iq ´ Uipa
1|Ic,iq and

Vipa
0, a1|Ic,iq “ maxtUipa

0|Ic,iq, Uipa
1|Ic,iqu. Note that

Rcpa
0 Ñ a1|Iq “ Rpa0 Ñ a1q, where Rpa0 Ñ a1q is

the resistance in case of perfect communication (see Section

II-C.2).

It can be seen that imperfect communication affects the

transition probability from a0 Ñ a1, and as a result, affects

its resistance. This means that the stochastically stable states

4However, evaluating which is a better strategy becomes case dependent
and is an avenue for future work.

may change. Hence, the outcome of the game may be

significantly different as compared to the case of perfect

communication.

Lemma 1: Consider a potential game where the agents

employ BLLL algorithm in the presence of stochastic com-

munication links. Furthermore, consider constrained action

sets that satisfy the reachability and reversibility properties.

The states with the minimum stochastic potential are the set

of potential maximizers if we have the following,ÿ
jRIc,i

mi,jpa
0q ě Rpa0 Ñ a1q ´Rcpa

0 Ñ a1|Ic,iq, (3)

for every agent i P I, all Ic,i and all a0 Ñ a1 “ pa1i , a
0

´iq,
where Rpa0 Ñ a1q is the resistance for the case of perfect

communication (see Section II-C.2).

Proof: If the conditions in the lemma hold, then the

resistance of the transition from a0 to a1 “ pa1i , a
0

´iq, for

some agent i, becomes Rcpa
0 Ñ a1q “ Rpa0 Ñ a1q.

Therefore, the resistances of the transitions do not change as

compared to the case of perfect communication. The proof

of the lemma then follows immediately from Lemma 5.2 and

Theorem 5.1 in [8].

Remark 1: A good choice of the constants

tmi,jpaqui,jPI, aPA, is such that they satisfy mi,jpaq ě
maxa0Ña1tRpa0 Ñ a1qu. This has the advantage that there

are separate conditions for each mi,jpaq and that they are

not dependent on how communication failures affect the

game.

Remark 2: Lemma 1 provides sufficient conditions to

guarantee that the states with the minimum stochastic po-

tential are still the set of potential maximizers. Equation

(3) can be more explicitly expressed as a function of con-

nectivity as
ř

jRIc,i
mi,jpa

0q “
ř

jRIc,i
logεpε

mi,jpa
0qq “ř

jRIc,i
logε

1´pc,i,jpa
0q

pc,i,jpa0q ě Rpa0 Ñ a1q ´ Rcpa
0 Ñ a1|Ic,iq,

for all Ic,i and all a0 Ñ a1. We can see that logε
1´pc,i,jpaq
pc,i,jpaq

is an important parameter (always positive). Furthermore, if

Rcpa
0 Ñ a1|Ic,iq ě Rpa0 Ñ a1q, then connectivity to agent

i is not important, since the condition is always satisfied.

The following theorem shows that we can find some τ ą 0

and pc,i,jpaq ă 1 to guarantee that the probability of the set

of potential maximizers in the stationary distribution is larger

than or equal to some required threshold.

Theorem 3: Consider a potential game where the agents

employ BLLL algorithm in the presence of stochastic com-

munication links. Furthermore, consider constrained action

sets that satisfy the reachability and reversibility properties.

For any given ptar ă 1, there exists a τth ą 0, such that the

probability of the set of potential maximizers in the stationary

distribution is larger than or equal to ptar, if 0 ă τ ď τth

and pc,i,jpaq “
1

1`ε
mi,jpaq

, @a P A, @i, j P I, where

tmi,jpaqui,jPI, aPA are constants satisfying Lemma 1.

Proof: We construct temperature-dependent probabili-

ties of connectivity, as discussed in Section III-A, such that

the constants tmi,jpaqui,jPI, aPA satisfy Lemma 1. Then, we

have a regular perturbed Markov process, and the states with

the minimum stochastic potential are still the set of potential

maximizers.
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P ε
c pa

0 Ñ a1q “
1

n|Acons
i pa0i q|

ÿ
Ic,i

ε
Vipa

0,a1|Ic,iq´Uipa
1|Ic,iq`

ř
jRIc,i

mi,jpa
0q`

εVipa0,a1|Ic,iq´Uipa1|Ic,iq ` εVipa0,a1|Ic,iq´Uipa0|Ic,iq
˘ś

jPI

`
1` εmi,jpa0q

˘ . (2)

From Theorem 2, we have μ0
x “ limτÑ0 μ

ε
x “ 0, @x R

A˚, where A˚ Ď A is the set of potential maximizers. Thus,

we know that, for any x R A˚, there exists a τx ą 0 such that

με
x ď

1´ptar

|AzA˚| , if 0 ă τ ď τx. Hence, we have
ř

aPA˚ μ
ε
a “

1´
ř

aRA˚ μ
ε
a ě ptar, if 0 ă τ ď τth “ minxRA˚ τx.

Note that τth depends only on the constants

tmi,jpaqui,jPI, aPA. The following theorem shows that

we can find a sufficient lower bound on the probability

of connectivity, to ensure that the probability of the set

of potential maximizers is larger than or equal to some

required threshold, for the special case of probabilities of

connectivity which are state independent and equal for all

links, i.e., pc,i,jpaq “ pc, @a P A, @i, j P I.

Theorem 4: Consider a potential game where the agents

employ BLLL algorithm in the presence of stochastic com-

munication links with probabilities of connectivity that are

state independent and equal for all links, i.e., pc,i,jpaq “
pc, @a P A, @i, j P I. Furthermore, consider constrained

action sets that satisfy the reachability and reversibility

properties. For any given ptar ă 1, there exists a pc,th ă 1,

such that the probability of the set of potential maximizers

in the stationary distribution is larger than or equal to ptar,

if pc ě pc,th and the temperature is chosen as τ “ ´m

lnp 1´pc
pc
q

,

with m representing a constant that satisfies Lemma 1.

Proof: We construct a temperature-dependent probabil-

ity of connectivity, as discussed in Section III-A, such that

the constant m satisfies Lemma 1, in order to establish a

pc,th. From Theorem 3, we know that there exists a τth ą 0,

such that probability of convergence to the set of potential

maximizers is larger than or equal to ptar, if 0 ă τ ď τth.

Consider pc ě pc,th “
1

1`e
´m
τth

. Then, the temperature

associated with this probability of connectivity is τ “

´m

lnp 1´pc
pc
q
“ τth

ln

´
1´pc,th
pc,th

¯
lnp 1´pc

pc
q
ď τth. Thus, the probability of the

set of potential maximizers is larger than or equal to ptar, if

pc ě pc,th with τ “ ´m

lnp 1´pc
pc
q

.

Recall that the BLLL algorithm allows perturbations from

the asynchronous best reply process, so as to allow agents

to intentionally choose locally sub-optimum actions with a

small probability. However, in the imperfect communica-

tion case, the failure of communication links also causes

the agents to unintentionally make sub-optimum decisions.

Given some ptar, our given sufficient conditions then aim

to restrict how often the unintentional mistakes can be

made. One observation in the proof of Theorem 3 is that

in general, τth and pc,i,jpaq are decreasing and increasing

functions of ptar respectively, i.e. if higher ptar is required,

then smaller temperature and better connectivity are needed.

This is because when ptar is higher, then less perturbation

from the asynchronous best reply process is allowed. Hence,

the agents have to assess their local utilities more accurately,

which requires better connectivity.

Theorem 3 can be easily extended to the case of Log-

Linear Learning. We skip the details for brevity.

B. An illustrative example

In this part, we provide an example to have a better
understanding on the impact of imperfect communication and
the results of Theorem 3. Consider a 2-agent game where
the action sets of the players are given by A1 “ tT,Bu (top,
bottom) and A2 “ tL,Ru (left, right). The utility function
Ui : A “ A1 ˆA2 Ñ R is given by

U1 L R
T 1 3
B 3 1

U2 L R
T 1 2
B 4 1

This is a potential game with the following potential function
φ : AÑ R:

U1 U2 φ

a1 “ pB,Rq 1 1 1

a2 “ pT,Lq 1 1 2

a3 “ pT,Rq 3 2 3

a4 “ pB,Lq 3 4 4

For the case where the two nodes cannot communicate,

we take U1pa|t1uq “

"
3 if a1 “ T

1 if a1 “ B
and U2pa|t2uq “"

1 if a2 “ L

2 if a2 “ R
.

We next find the stochastic potential for each action

profile, i.e. the minimum resistance of the tree rooted at each

action profile. For the case of perfect communication, the

(only) state with minimum stochastic potential is a4. For the

case of imperfect communication, we consider the scenario

where the probability of connectivity is state-independent,

i.e., pc “ pc,1,2 “ pc,2,1. Let m “ m1,2 “ m2,1 “ logε
1´pc

pc
.

By constructing all the resistance trees, we find that a4

still has the minimum stochastic potential if and only if

m “ logε
1´pc

pc
ą 1. From (3) in Lemma 1, our derived

sufficient condition for the probability of connectivity to

guarantee that a4 still has the minimum stochastic potential

can be found as m “ logε
1´pc

pc
ě 3.

By evaluating (1), we calculate the stationary distribution

for the case of imperfect communication to see how the

probability of the potential maximizer (a4) changes as a

function of pc and τ , as shown in Fig. 2. The curves for

m “ 1, m “ 1.5 and m “ 3 are also marked. It can

be seen that given any ptar, the required probability of the

potential maximizer can always be achieved by choosing

a fixed m ą 1 and finding some appropriate τ and pc.

(Theorem 3 shows a sufficient condition for this, where

m ě 3). Informally, as discussed in Section II-C, this is

because the state with the minimum stochastic potential (in

this case, the potential maximizer a4) is the easiest to transit

to. Furthermore, Theorem 4 states that for any given ptar ă 1,

there exists a pc,th ă 1, such that the probability of the set of

potential maximizers in the stationary distribution is larger

than or equal to ptar, if pc ě pc,th and τ “ ´m

ln

´
1´pc
pc

¯ , with

m representing a constant that satisfies Lemma 1. As an
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Fig. 2. The color map corresponds to the probability of the potential
maximizer as a function of τ and pc. The curves for m “ 1, m “ 1.5 and
m “ 3 are also shown. The figure also shows the τth and pc,th corresponding

to the target probability of ptar “ 0.7 when m “ logε
1´pc

pc
“ 3.

example, consider achieving ptar “ 0.7 whose contour line

is marked in the figure. The τth and pc,th for achieving this

are 0.7 and 0.985 respectively for m “ 3. Then, Theorem 4

states that ptar “ 0.7 can be achieved for any probability

of connectivity higher than pc,th using temperature τ “
´3

lnp 1´pc
pc
q

.

The curve m “ logε
1´pc

pc
“ 1 could be thought of as

a transition curve, as curves above it can achieve any ptar,

while those below it cannot. This is due to the fact that

above this curve a4 is the only state with minimum stochastic

potential, while, on this curve, the states with minimum

stochastic potential are a4 and a3. On the other hand, below

this curve, a3 is the (only) state with minimum stochastic

potential. Informally, this means that the potential maximizer,

a4, becomes more difficult to transit to as compared to a3

when m ă 1. In fact, for m ă 1, the probability of the

potential maximizer a4 becomes arbitrarily small as τ Ñ 0.

Note that we have plotted the y-axis only down to 0.88 for

better visibility.
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Fig. 3. Probability of potential maximizer as a function of temperature
for different m. The figure also shows the τth corresponding to the target
probability of 0.7 when m “ 3.

Fig. 3 and 4 better highlight the transition behavior. Fig.

3 shows the probability of the potential maximizer as a

function of the temperature, for various values of logε
1´pc

pc

(m). The transition behavior of the curve m “ logε
1´pc

pc
“ 1,

is clearly observed. Finally, Fig. 4 shows the probability of

the potential maximizer as a function of logε
1´pc

pc
for various

values of temperature τ . The transition point can clearly be

seen at m “ 1.
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Fig. 4. Probability of potential maximizer vs m for different temperatures.

IV. CONCLUSIONS

In this paper, we considered the problem of distributed

decision-making in multi-agent systems (via potential games)

with an emphasis on the impact of realistic communication

links. We showed how to extend the current literature on

potential games with binary log-linear learning to account for

stochastic communication channels. We derived conditions

on the probabilities of link connectivity and BLLL’s temper-

ature to achieve a target probability for the set of potential

maximizers. Furthermore, our toy example demonstrated a

transition phenomenon for achieving any target probability.
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