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Abstract—In this paper, we are interested in counting the total
number of people walking in an area based on only WiFi received
signal strength indicator (RSSI) measurements between a pair of
stationary transmitter/receiver antennas. We propose a frame-
work based on understanding two important ways that people
leave their signature on the transmitted signal: blocking the Line
of Sight (LOS) and scattering effects. By developing a simple
motion model, we first mathematically characterize the impact
of the crowd on blocking the LOS. We next probabilistically
characterize the impact of the total number of people on the
scattering effects and the resulting multipath fading component.
By putting the two components together, we then develop a
mathematical expression for the probability distribution of the
received signal amplitude as a function of the total number
of occupants, which will be the base for our estimation using
Kullback-Leibler divergence. In order to confirm our framework,
we run extensive indoor and outdoor experiments with up to
and including 9 people and show that the proposed framework
can estimate the total number of people with a good accuracy
with only a pair of WiFi cards and the corresponding RSSI
measurements.

Index Terms—Occupancy counting, WiFi measurements,
Crowd counting, Probabilistic Analysis

I. INTRODUCTION

In recent years, there has been considerable interest in

understanding what WiFi signals can tell us about our environ-

ment. There are several potential applications that can benefit

from such a sensing that relies only on the available WiFi

signals. Search and rescue [1], robotic exploration, location-

aware services, and smart health systems such as elderly

monitoring, are just a few examples.

Work on WiFi-based localization can be broadly categorized

into two groups: device-based active and device-free passive

localization. A survey of the literature shows several work

in the area of device-based sensing and localization, where

a user’s WiFi-enabled gadget, for instance, actively tries to

position itself [2], [3]. In passive device-free sensing, on the

other hand, WiFi-enabled nodes/network sense and map their

environment, for instance objects and humans, without any

communication from those objects. Along this line, there has

been work on seeing through walls with only WiFi (our past

work) [1], [4], motion tracking [5], [6], and gesture recognition

[7].

In this paper, we are interested in occupancy estimation,

i.e. estimating the total number of people walking in a given

space, based on only WiFi power measurements between a

transmitter and a receiver. Fig. 1 shows an example of our
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considered scenario, where a fixed TX/RX pair are tasked with

estimating the total number of people that are casually walking

in an area.

There are several potential applications that can benefit from

occupancy estimation. Smart building management, where

heating and cooling can be automatically optimized based

on detecting the level of occupancy is one example, which

can result in a considerable energy saving [8], [9]. There are

other similar location-aware services that a business can also

optimize based on detecting the level of occupancy. Proper

occupancy detection can also play a key role in an emergency

response operation where a crowd needs to be guided to

evacuate an area.

Current literature on occupancy level detection either

uses cameras [10]–[12] or RF signals. The use of direct

vision-based techniques (cameras) is typically limited by high

deployment and computational costs. Occupancy detection,

based on RF signals, on the other hand, has recently attracted

considerable attention. Several methods in this category,

however, are active and rely on RF devices carried by users,

which may not be feasible [13]–[15]. Along the line of device-

free RF-based occupancy estimation, another line of work has

relied on the use of a network of RF nodes (e.g. 10-20 nodes)

and fingerprinting/prior site surveys for classification based

on received signal strength (RSS) measurements [16]. In [17],

multiple RF nodes are used to estimate the location and total

number of up to four people based on RSS measurements.

They report accuracy within an estimation error of 1 person,

approximately 84% of the time. [18] uses a similar approach

with fewer nodes and counts up to three people. In [19], a

TX/RX pair is used to detect the number of people based

on RSS measurements. Extensive training data is used (at

the level of running the real experiment) to develop the

underlying model and errors up to six people are reported

in a study limited to 9 people. In [20], the authors measure

the channel state information across several sub-carriers (e.g.

30), develop a model to relate this to the total number of

people through a training phase, and test their approach with

one transmitter and three receivers, for counting up to and

including 9 people. However, measuring channel state across

several frequency sub-bands is not possible with most current

WiFi cards. In [21], authors use ultrawideband radar to count

up to three stationary people behind walls, based on vital

signal detection. In [22], the authors use a pulsed radar for

occupancy estimation by applying learning algorithms.

In this paper, we are interested in estimating the total

number of people walking in an area based on only WiFi

power measurements (no channel state measurements at

several sub-carriers required) between only one fixed TX/RX

pair, as shown in Fig. 1. As we shall see, through a proper



mathematical characterization of the blocking and multipath

fading effects, we can count up to and including 9 people in

both indoor and outdoor environments with a good accuracy.

To the best of our knowledge, a similar performance has

not been reported before with only RSSI measurements.

For instance, [20] uses channel state measurements across

30 sub-channels and three receivers to achieve a similar

performance. This holds promises for further extension of the

state of the art on occupancy detection. For instance, if one

can also measure the channel state at several sub-carriers,

this additional information and our probabilistic approach can

potentially be combined to achieve a good quality occupancy

detection in more complex areas with a higher number of

people.

Next, we summarize our key contributions. We separate the

impact of a walking person on the transmitted WiFi signal into

two key components: 1) blocking of the LOS and 2) multipath

effect. This separation is important as each component carries

information on the total number of people in a different way.

By developing a simple motion model, we then mathematically

characterize the first component probabilistically. Our results

indicate that this component carries vital information on the

total number of people. For instance, if directional antennas

are used, this component could even suffice for high-accuracy

occupancy estimation (at least for up to and including 9 peo-

ple), as our experimental results confirm. We further charac-

terize the scattering impact of people through probabilistically

analyzing the resulting multipath fading as a function of the

number of occupants. By putting the two components together,

we finally develop a mathematical expression for the probabil-

ity distribution of the received signal amplitude as a function

of the total number of occupants. This derived PDF is then

compared to the experimental one via using Kullback-Leibler

divergence as a metric, and the argument that minimizes it is

taken as the estimate of the number of occupants. We then

run extensive indoor and outdoor experiments with up to and

including 9 people and both omni and directional antennas.

Our results confirm that the proposed framework can estimate

the total number of walking people with a good accuracy. For

instance, an error of 2 or less is achieved 96% and 63% of

the time for the outdoor and indoor cases respectively, when

using the typical omnidirectional antennas that come as part

of the standard WiFi cards. When using directional antennas,

we further observe an error of 2 or less 100% of the time for

both the outdoor and indoor cases.

The rest of the paper is organized as follows. In Section II,

we explain our problem formulation and develop our motion

model. In Section III-A, we characterize the probability of

crossing the LOS. Multipath effects are then modeled in

Section III-B, where a final expression is developed by putting

both blocking and multipath effects together. In Section IV,

we present several indoor and outdoor experimental results

confirming that our approach can estimate the total number of

people with a good accuracy. We conclude and discuss further

extensions in Section V.

Fig. 1: A stationary WiFi transmitter and receiver are tasked

with determining the number of people in the area based on

the received power measurements over a short period of time.

Note that the robots are merely carrying the WiFi cards and

TX/RX are not moving in this paper.

II. PROBLEM FORMULATION

Consider a scenario where N people are walking casually

in an area as shown in Fig. 1. A WiFi transmitter (TX) and

receiver (RX) are positioned (both stationary) at the border of

this area to collect measurements, as marked in the figure. The

goal of this paper is to estimate the total number of people

based on only the received signal strength measurements

over a small period of time. In this section, we present the

mathematical formulation of our motion model. It should be

noted that in our experiments, we have no control over how

people walk and they are simply asked to walk casually. Thus,

the purpose of this section is to derive a simple mathematical

model for a casual walk.

A. Workspace Model

Consider a rectangular region of dimension L × B, as

shown in Fig. 2a. We discretize it to form a 2-D discrete

workspace W consisting of cells, wherein the position of each

cell is specified by the coordinates of its center. The origin

is taken to be at the lower left corner. Moreover, the length

and breadth are partitioned into Ndiv,x and Ndiv,y segments

respectively. The dimension of a cell is thus Δx × Δy,

with Δx = L/Ndiv,x and Δy = B/Ndiv,y . The workspace

can then be summarized by W = {(x, y)|x ∈ X , y ∈
Y} where X = { 12Δx, 32Δx, · · · 2Ndiv,x−1

2 Δx} and Y =

{ 12Δy, 32Δy, · · · 2Ndiv,y−1
2 Δy}.

A transmitter and receiver are located at the coordinates

(L/2, 0) and (L/2, B) respectively. N people are moving in

this workspace. In our mathematical modeling of this section,

we discretize the position of each person to the center of a

cell. This is solely for modeling purposes and people are not

walking in a discretized manner in our experimental setup.



(a)

(b)

Fig. 2: (a) An illustration of the workspace, (b) An illustration

of the modeled boundary behaviour.

B. Motion Model

In general, mathematical modeling of the motion of people

is a challenging problem and not the focus of this paper.

Instead, we are interested in a simple probabilistic motion

model in order to characterize the stationary distribution of

the position/heading of the people in the next section.

In our experiments, people were asked to walk casually.

We observed that people had a tendency to maintain their

direction for a while before changing it. In this section we

come up with a simple mathematical model to characterize

the movement of the people. For the sake of mathematical

characterization, we assume that each person moves around

the workspace independent of the others and at a speed of

dstep per iteration.1 At each iteration, we assume that a person

chooses a direction θ (w.r.t the x axis as shown in Fig. 2a)

and moves a distance of dstep in that direction. If a step results

in a person crossing the boundary, we assume that the person

reflects off the boundary and lands back inside the workspace,

as shown in Fig. 2b. Note that the total distance traveled is

still dstep, as shown in Fig. 2b. At every iteration, the position

1An iteration refers to a time instant under the discretization of time.

of a person would be quantized to the center of the cell in

which she currently resides.

We discretize the angle space [0, 2π) into ϑ =
{0,Δθ, · · · , (Ndiv,θ − 1)Δθ} with Δθ = 2π

Ndiv,θ
. At each

iteration, we assume that each person maintains the same

heading of the previous iteration, i.e. chooses the same θ, with

the probability pθ < 1, and selects an angle uniformly from ϑ
with the probability 1− pθ. The motion of person i can then

be characterized by the following,

θi(t+ 1) =

{
θi(t) w.p. pθ
uniformly from ϑ w.p. 1− pθ , (1)

xi(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−xi(t)− roundx(dstep cos θi(t))
if xi(t) + roundx(dstep cos θi(t)) < 0

2L− xi(t)− roundx(dstep cos θi(t))
if xi(t) + roundx(dstep cos θi(t)) > L

xi(t) + roundx(dstep cos θi(t))
otherwise

,

(2)

yi(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−yi(t)− roundy(dstep sin θi(t))
if yi(t) + roundy(dstep sin θi(t)) < 0

2B − yi(t)− roundy(dstep sin θi(t))
if yi(t) + roundy(dstep sin θi(t)) > B

yi(t) + roundy(dstep sin θi(t))
otherwise

,

(3)

where roundx(d) = (argmink∈Z |d − kΔx|)Δx and

roundy(d) = (argmink∈Z |d − kΔy|)Δy are functions that

round the input to the closest multiple of Δx and Δy respec-

tively. Furthermore xi(t) and yi(t) denote the position of the

ith person at time t along the x and y axis respectively, and

θi(t) represents the angle of person i at time t. Note that we

excluded the case of pθ = 1 as it implies a purely deterministic

motion model, which is not a good representation of a casual

walk.

III. ESTIMATION OF THE TOTAL NUMBER OF PEOPLE

BASED ON WIFI POWER MEASUREMENTS

In this section, we discuss our proposed approach for

estimating the total number of people based on only WiFi

power measurements. A person will leave her signature on

the received signal in two ways. First, when she crosses the

LOS path between the TX and RX, she blocks the transmitted

signal, resulting in a drop in the received signal power. Second,

she acts as a scatterer of the signal, contributing to multipath

fading (MP). As a result, we have two underlying effects:

possible blockage of the LOS and multipath fading, both

of which carry implicit information of N . Fig. 3 shows an

example of a received signal power measurement (N=5 in this

case). Sample arrows on the figure mark the impact of LOS

blockage as well as MP. For a lower level of occupancy, the

blocking effect typically results in more pronounced drops as

compared to MP. However, as the number of people increases,

MP can result in similar levels of drop. As such, it is important

to consider both effects.



Our proposed approach is thus based on the understanding

and characterization of the impact of N on these two phe-

nomena.2 We start by modeling the probability of blocking

the LOS path in Section III-A. This characterization is then

utilized in Section III-B, to mathematically model both effects

and find an expression for the overall probability density

function (PDF) of the received signal amplitude as a function

of N .

Fig. 3: Sample received signal power for N=5, where a few

examples of LOS blocking and MP effects are marked.

A. Characterization of the Probability of Blocking the LOS

In this section we characterize the probability that k number

of people cross the LOS in an iteration. We begin by finding

the stationary probability distribution of the position and head-

ing of a person. The main reason to characterize a stationary

distribution is to make our framework as independent of the

details of the motion as possible. We discuss this further

in Remark 1. This, however, does not imply that we need

to collect measurements for a very long period of time in

practice. For instance, as we shall see in Section IV, we collect

measurements for only 300 seconds, and the modeling of our

paper provides a good approximation.

1) Asymptotic Distribution of the Position and Heading: In

this part, we prove that the position and heading of a person

takes a uniform distribution asymptotically.

Let Θ(t) ∈ ϑ be a random variable denoting the heading of

a person at time t. Equation (1) induces a Markov chain as

follows:

μΘ(t+ 1) = PΘμΘ(t), (4)

where μΘ(t) is a column vector with the ith entry as [μΘ(t)]i =
Pr(Θ(t) = (i − 1)Δθ) for i ∈ {1, 2, · · · , Ndiv,θ} and PΘ is

a matrix with the (i, j)th entry as [PΘ]ij = Pr
(
Θ(t + 1) =

(i− 1)Δθ|Θ(t) = (j − 1)Δθ
)

for i, j ∈ {1, 2, · · · , Ndiv,θ}.
Lemma 1: Consider the heading dynamics of (1). Then the

stationary distribution of Θ(t) is uniform.

2We note that there are several propagation phenomena when a transmission
occurs. Our goal is not to model all these effects but rather have a simple yet
comprehensive enough modeling for the purpose of estimating N .

Proof: From the heading dynamics, we have the proba-

bility transition matrix as

PΘ =

⎛
⎜⎜⎜⎜⎝
pθ +

1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

· · · 1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

pθ +
1−pθ
Ndiv,θ

· · · 1−pθ
Ndiv,θ

...
...

. . .
...

1−pθ
Ndiv,θ

1−pθ
Ndiv,θ

· · · pθ +
1−pθ
Ndiv,θ

⎞
⎟⎟⎟⎟⎠ .3 (5)

It can be seen that PΘ is doubly stochastic. By applying the

Geřsgorin disk theorem [23], it can be easily seen that the

spectral radius of PΘ is 1. Since pθ < 1, we have PΘ � 0,

i.e. PΘ is positive. Then, by applying the Perron-Frobenius

theorem [24], we have limt→∞(PΘ)t = 1Ndiv,θ
ωT , where ω

is the left eigenvector of PΘ, 1TNdiv,θ
ω = 1 and 1r denotes a

column vector of ones of size r. It can be easily confirmed

that ω = 1
Ndiv,θ

1Ndiv,θ
, since PΘ is doubly stochastic, resulting

in limt→∞(PΘ)t = 1
Ndiv,θ

1Ndiv,θ
1TNdiv,θ

and

μΘ = lim
t→∞μ

Θ(t) =
1

Ndiv,θ
1Ndiv,θ

. (6)

This means that the heading takes a uniform distribution

asymptotically.

We next characterize the asymptotic distribution of the

position. Let X(t) ∈ X be a random variable denoting the

x axis coordinate of a person at time t. Equation (2) then

induces the following Markov chain,

μX(t+ 1) = PXμX(t), (7)

where μX(t) is a column vector with the ith entry [μX(t)]i =
Pr(X(t) = 2i−1

2 Δx), for i ∈ {1, · · · , Ndiv,x}, and PX is a

matrix with the (i, j)th entry as [PX ]ij = Pr
(
X(t + 1) =

2i−1
2 Δx|X(t) = 2j−1

2 Δx
)

for i, j ∈ {1, · · · , Ndiv,x}.
Lemma 2: Consider the motion dynamics of (1)-(3). Then,

the stationary distribution of X(t) is uniform.
Proof: Let Θ = limt→∞Θ(t). Let Dx =

roundx(dstep cosΘ) be a random variable denoting the
distance traveled by a person (rounded to a multiple of Δx)
along the x axis when the probability distribution of Θ(t) has
converged to its stationary distribution. The probability mass
function (PMF) of Dx, pDx

, is given as

pDx (kΔx) =
∑

i∈{1,··· ,Ndiv,θ}:dstep cos( i−1
Ndiv,θ

2π)∈[kΔx−Δx
2

,kΔx+Δx
2

)

(μΘ)i

=
∑

i∈{1,··· ,Ndiv,θ}:dstep cos( i−1
Ndiv,θ

2π)∈[kΔx−Δx
2

,kΔx+Δx
2

)

Δθ

2π

≈ 2

∫
θ∈[0,π):dstep cos θ∈[kΔx−Δx

2
,kΔx+Δx

2
)

1

2π
dθ

=

∫ kΔx+Δx
2

kΔx−Δx
2

1

π
√

d2step − r2
dr

≈
{ Δx

π
√

d2step−(kΔx)2
, if k ∈ Z and |kΔx| < dstep

0 else
,

(8)

3An additional
1−pθ
Ndiv,θ

term is present along the diagonal since a person

may still select its previous angle when she selects uniformly from ϑ.



where the second equality follows since [μΘ]i =
1

Ndiv,θ
= Δθ

2π

for i ∈ {1, · · · , Ndiv,θ}. Moreover, the fourth equality follows

from the change of variable r = dstep cos θ.
The (j, i)th element of PX can then be expressed as

[PX ]ji = Pr

(
X(t+ 1) =

2j − 1

2
Δx|X(t) = 2i− 1

2
Δx

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pDx((j − i)Δx) + pDx((−j − i+ 1)Δx)

if j ∈ {1, · · · , �dstep

Δx �}
pDx

((j − i)Δx)+
pDx

((2Ndiv,x + 1− j − i)Δx)
if j ∈ {Ndiv,x − �dstep

Δx �, · · · , Ndiv,x}
pDx

((j − i)Δx)
else

= [PX ]ij ,
(9)

where the second terms in the first and second cases denote

the probability of a transition from the ith to the jth cell via

reflections off of the boundaries, and the last line follows

since pDx
(iΔx) = pDx

(−iΔx). It can be seen that PX is

thus doubly stochastic. Moreover, the graph induced by PX

is strongly connected and aperiodic. This implies that PX is

primitive [25]. Thus, similar to (6), we can apply the Perron-

Frobenius theorem to deduce that

μX = lim
t→∞μ

X(t) =
1

Ndiv,x
1Ndiv,x

. (10)

A similar analysis can be carried out for the probability of

the position along the y-axis. Lemma 1 and 2 show that the

position and heading of a person takes a uniform distribution

asymptotically.
Remark 1: While we derived the uniform asymptotic dis-

tribution for the angle model of (1), constant speed, and

boundary behavior of Fig. 2b, we expect that an asymptotic

stationary distribution will be achieved whenever there is a

small amount of randomness in the motion model. A more

rigorous characterization of this, however, is a subject of

further studies.
2) Characterization of the Probability of Blocking: In this

part, we derive a mathematical expression for the probability

of blocking the LOS.
Definition 1: We say a blocking (crossing)4 has occurred

at time t + 1 if either xi(t) ≤ L/2 and xi(t + 1) ≥ L/2 or

xi(t) ≥ L/2 and xi(t+ 1) ≤ L/2.
Based on the definition above, a cross has also occurred if

a person lands exactly on the LOS path or moves along it.

Thus, this probability of crossing considers slightly more cases

than the case of only cutting the LOS, which is of interest to

us. However, as we shall see, since we take Δx → 0, the

probability of these special cases tends to zero, resulting in

the desired probability of crossing.
Theorem 1: The asymptotic probability of a cross of a

single person in an iteration can be characterized as

pcross =
2dstep

πL
. (11)

4We use the terms crossing and blocking interchangeably since a non-zero
speed is assumed.

Proof: A crossing occurs if a person who is sufficiently

close to the LOS takes a large enough step to go over the

LOS line. Based on Lemma 2, we can write the following

expression for the probability of a cross of one person (in one

time step):

pcross = 2

� L
2Δx+ 1

2 �∑
i=� L

2Δx+ 1
2 �−�

dstep
Δx �

[μX ]i

� dstep
Δx �∑

k=� L
2Δx+ 1

2 �−i
pDX

(kΔx)

= 2

� L
2Δx+ 1

2 �∑
i=� L

2Δx+ 1
2 �−�

dstep
Δx �

Δx

L

� dstep
Δx �∑

k=� L
2Δx+ 1

2 �−i

Δx

π
√
d2step − (kΔx)2

≈ 2

∫ L/2

L/2−dstep

∫ dstep

L/2−x

1

L

1

π
√
d2step − (r)2

dxdr

= 2

∫ dstep

0

1

L

∫ 1

x/dstep

1

π
√
1− r2 dxdr

=
2dstep

πL
,

(12)

where the second equality follows since [μX ]i =
1

Ndiv,x
= Δx

L ,

for i ∈ {1, · · · , Ndiv,x}.
Note that pcross is a linear function of dstep, as expected.

Since there are N people in the workspace, we can have

simultaneous crosses.

Corollary 1: Let pK,N denote the PMF of random variable

K denoting the number of simultaneous crosses with N people

in the workspace. Assuming independent motion models for

the people then results in the following expression

pK,N (k) = Pr(k simultaneous cross)

=

(
N

k

)
pkcross(1− pcross)

N−k, (13)

where pcross is as defined in Theorem 1.

Remark 2: Although, our derivation of pcross is under the

assumption of a constant speed dstep, our result can be extended

to the case of a person moving with a variable random speed.

Due to pcross being linear in dstep, the probability of a cross

would then become pcross =
2dstep

πL , where dstep denotes the

average speed of the person.

B. Derivation of the PDF of the received signal

In this section, we consider both blocking and MP effects

and find an expression for the PDF of the received signal

strength as a function of N .

Consider N people walking in the area of interest with a

constant speed. As we discussed earlier, each person impacts

the received signal by 1) blocking when she crosses the

LOS and 2) scattering. Furthermore, there may be several

other objects in the area impacting the received signal. We



assume that these objects are stationary in our modeling.5 The

baseband equivalent received signal is then given by

A = b0e
jψ0︸ ︷︷ ︸

LOS

+
M∑
j=1

bje
jψj

︸ ︷︷ ︸
MP due to static objects

+

N∑
i=1

aie
jφi

︸ ︷︷ ︸
MP due to walking people

,

= a0e
jφ0 +

N∑
i=1

aie
jφi

= ALOS,ST +AMP,

(14)

where b0 and ψ0 are the amplitude and phase of the LOS

path respectively, ai and φi are the amplitude and phase

of the path resulting from scattering off of the ith person

respectively, and bj and ψj , for j �= 0, are the amplitude

and phase of the path resulting from scattering off of the

jth static object respectively. Then
∑M
j=1 bje

jψj denotes

the impact of other static objects on the received signal,

with M representing the total number of such static objects.

Let ALOS,ST � b0e
jψ0 +

∑M
j=1 bje

jψj = a0e
jφ0 denote the

summation of the LOS component and the MP due to the

static objects. Furthermore, let AMP �
∑N
i=1 aie

jφi represent

the MP component due to people walking. The phase of each

path, φi, for i = 1, 2...N , and ψj , for j = 0, 1, 2...M , is

assumed to be uniformly distributed in [0 2π].6 φi is assumed

independent of ai and φj , and ai is taken independent of

aj , for j �= i [27]. Note that the Doppler shifts due to the

scatterer motion is small and thus not considered in this paper.

We are interested in deriving the PDF of the received signal

amplitude |A|. Since ALOS,ST and AMP are independent, we

have [26]

CA(U) = CALOS,ST
(U)CAMP

(U),

where CALOS,ST
(U), CAMP

(U) are the characteristic functions

of ALOS,ST and AMP respectively, and U is the corresponding

variable of the characteristic functions.

CAMP
(U) can be characterized as follows:

CAMP
(U) = EAMP

(ejU•AMP)

= EAMP
(ejU•(

∑N
i=1 aie

jφi ))

= EAMP
(

N∏
i=1

ejU•(aie
jφi ))

=
N∏
i=1

Eai,φi
(ejU•(aie

jφi ))

(since ai, φi independent of aj , φj)

=

N∏
i=1

Eai,φi(e
j|U |aicos(φi−∠(u)))

=
N∏
i=1

Eai(J0(ai|U |)),

(15)

5During the experiment, other surrounding objects such as leaves may
move. However, the impact of their motion is typically negligible as compared
to other effects.

6This assumption is justifiable since we operate at a high frequency [26].

where J0 is the zeroth-order Bessel function of the first kind,

Ea(.) represents the expectation w.r.t a, and • represents the

dot product. Similarly, the characteristic function of ALOS,ST

is given by

CALOS,ST
(U) = Ea0(J0(a0|U |)). (16)

Note that the characteristic functions depend only on the
magnitude of U and therefore are circular symmetric [27].
The PDF of A is then given as

pA(Z) =
1

4π2

∫ ∞

|U|=0

∫ 2π

∠U=0
e−jU•ZCA(U)|U |d|U |d∠U

=
1

4π2

∫ ∞

|U|=0

∫ 2π

∠U=0
e−j|U||Z|cos(∠U−∠Z)CA(U)|U |d|U |d∠U

=
1

4π2

∫ ∞

|U|=0
|U |

(∫ 2π

∠U=0
e−j|U||Z|cos(∠U−∠Z)d∠U

)
CA(U)d|U |

=
1

2π

∫ ∞

|U|=0
|U |J0(|U ||Z|)CA(U)d|U |

=
1

2π

∫ ∞

|U|=0
|U |J0(|U ||Z|)

( N∏
i=1

Eai (J0(ai|U |))
)

Ea0 (J0(a0|U |))d|U |.
(17)

Then, the PDF of |A| can be found as

p|A|(z) =
∫ 2π

∠A=0
zpA(A)d∠A

= z

∫ ∞

|U|=0
|U |J0(|U |z)

( N∏
i=1

Eai (J0(ai|U |))
)

Ea0 (J0(a0|U |))d|U |.

(18)

Random variable a0 can only take discrete values correspond-

ing to the received signal strength when different number of

people are along the LOS path. Thus by using Theorem 1, we

have the following for the PDF of a0
7

pa0 =

N∑
k=0

(
N

k

)
pkcross(1− pcross)

N−kδ(a0 −Bk), (19)

where Bk is the received signal amplitude when k people are

along the LOS path,8 and δ(.) is the Dirac delta function.

Using (19), we get

Ea0(J0(a0|U |)) =
N∑
k=0

(
N

k

)
pkcross(1− pcross)

N−kJ0(|U |Bk).
(20)

In order to evaluate the characteristic function of AMP, we need

to characterize the PDF of ai for i �= 0, i.e. the amplitude of

each component of MP due to people walking. Since ai for

i �= 0 is the amplitude of the scattered signal from only one

scatterer (one person), Rayleigh statistics cannot be used [27].

In a different context, a K-distribution is widely used to model

the sea clutter and echo signal from biological tissues when

the number of scatterers are low [27], [28], [29]. We thus use

7Note that this is the PDF of the received signal amplitude when there is
no MP component due to people walking, i.e. only the LOS component and
MP due to static objects are present.

8Note that impact of static objects is inherently included in Bk .



K-distribution to model the PDF of ai for i �= 0 as follows

[27],

pai =
2b

Γ(1 + ν)

(ba
2

)ν+1

Kν(ba) ν > −1, i �= 0 (21)

where Kν(.) is the modified Bessel function of the second

kind, and b and ν are the parameters of the distribution. Since

the scatterers are taken to have identical statistics, we get

N∏
i=1

Eai(J0(ai|U |)) = (Eai(J0(ai|U |)))N . (22)

Therefore the PDF of |A| is given by

p|A|,N (z) = z

∫ ∞

|U|=0
|U |J0(|U |z)(Eai (J0(ai|U |)))NEa0 (J0(a0|U |))d|U |

= z

∫ ∞

|U|=0
|U |J0(|U |z)f(N)d|U |,

(23)

where we added the subscript N to emphasize the dependency

on N , and

f(N) = (Eai(J0(ai|U |)))NEa0(J0(a0|U |)). (24)

IV. EXPERIMENTAL RESULTS

In this section, we show that our proposed framework can

estimate the number of people well in several different cases

in both indoor and outdoor environments. We start by briefly

summarizing our experimental setup.

We use an 802.11g card for both the transmitter and the

receiver. More specifically, the transmitter uses D-Link WBR-

1310 wireless router [30], broadcasting a wireless signal. The

receiver then constantly measures its receptions. In our setup,

the transmitter and receiver are stationary and mounted on two

Pioneer 3-AT mobile robots from MobileRobots Inc. [31], as

shown in Fig. 4a. It should be noted that any other object

could have been used to hold the TX/RX as far as the scenario

of this paper is concerned (since the TX and RX are not

moving). However, the automation through the use of robots

hold promises for the future extensions of this work. The

overall operation is then overseen by a remote PC, which is

in charge of communicating the execution plan and collecting

the final received signal strength (RSS) readings at the end of

the operation.

We run two different sets of experiments in both outdoor and

indoor environments. In the first set of experiments, we use

directional antennas for both the transmitter and the receiver.

We then show that in this case, modeling the received signal

with only ALOS,ST of (14) suffices for the estimation of the

number of people. In the second case, we use omnidirectional

antennas at both the transmitter and the receiver. We then show

that a good estimation of the total number of people can be

achieved by using our proposed modeling of (23).

Fig. 5a shows the outdoor site, which has the dimensions

L = 7 m and B = 10 m. Fig. 5b then shows the indoor

site with the dimensions L = 4.4 m and B = 7.5 m.

These dimensions are assumed to be known to the estimator.

Experiments are carried out with 1, 3, 5, 7 and 9 people.

People are told to walk casually in the area and bounce of the

(a)

(b)

Fig. 4: (a) Pioneer 3-AT Robot with an omnidirectional

antenna, (b) GD24-15 2.4 GHz parabolic grid directional

antenna.

boundary when they approach it. The data is collected for 300

seconds, at the rate of 50 samples/s. A constant velocity of

1 m/s is assumed for the estimation process. Note that this is

only for the purpose of mathematical modeling and estimation,

and that we have no control over the speed of the people when

they walk.

The environment of interest has other objects that will

interact with the transmitted signal,9 as discussed in (14), and

their impact is modeled in ALOS,ST. As can be seen from (23),

prior estimation of Bks is needed for our approach. In order

to acquire this, prior measurements are made when k number

of people are walking on the straight line connecting the

transmitter and the receiver (in order to average the attenuation

over several possible combinations). We should note that in

practice this approach is scalable for the following reason.

As the number of people increases, the value of Bk starts to

saturate. Thus, we only need to collect prior measurements in

order to estimate Bk for the lower values of k. In addition,

dynamical system models can also be utilized to further fine

tune the estimation of Bk at the higher values of k. Let B̂k
represent the prior estimation of Bk in the rest of this section.

9We assume that these objects are not moving. However, when we carry
out our experiments, movements of vehicles and leaves (in the outdoor
environment) were naturally inevitable.



(a) Outdoor Site

(b) Indoor site

Fig. 5

As for the MP part (AMP in (14)), we further need a prior

estimation of b and ν. We measure these parameters a priori

by having one person move in the area without crossing the

LOS path. Then, the PDF of the collected measurements is

matched to the convolution of the K-distribution of (21) and

the PDF of the LOS path when no people are around, in order

to find the best fit of b and ν.

A. Estimation of the Number of People in Outdoor Environ-
ments

In this section, we show our results in outdoor environments

with both directional and omnidirectional antennas.

1) Estimation with Directional Antennas: In this part, di-

rectional antennas are used at both the transmitter and the re-

ceiver. More specifically, we use GD24-15 2.4 GHz parabolic

grid antennas from Laird Technologies, as shown in Fig. 4b.

This model has a 15 dBi gain with 21 degree horizontal and

17 degree vertical beamwidth and is suitable for IEEE 802.11

b/g applications [32]. This is an important case to study as

it brings an understanding to the blocking characterization of

Section III-A (first term in the second equation of (14)). More

specifically, we see that, in this case, the impact of the crowd

on the transmitted signal is mainly captured through the first

term in (14), i.e. people impact the signal when they cross the

LOS, and the multipath effect, due to scattering off of people,

is negligible.

From (13), we have pK,N , the theoretical PMF for the

number of simultaneous crosses per time, as a function of

Fig. 6: An illustration of our approach for estimating N in the

directional case.

N . Since we are not considering the impact of MP due to

people walking in this case, this equation will be the base

for our estimation of N . Fig. 6 summarizes the underlying

estimation steps in this case. Fig. 6a shows an example of the

received signal power measured for a sample case of N = 3
in the outdoor environment. First, we generate the PMF of the

measured RSS (Fig. 6b). By using B̂ks, the prior estimates

of Bks, the PMF is quantized to the closest B̂ks (Fig. 6c),

which can then be directly translated into an estimation of the



Fig. 7: KL divergence DKL(pK,exp||pK,M ) between the the-

oretical and experimental PMF of simultaneous crosses, as

a function of M , for the case of N = 3 (with directional

antennas) in the outdoor site. It can be seen that the curve is

minimized at Nest = 3, resulting in an accurate estimation of

the total number of people.
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(a) Outdoor with directional TX/RX antennas
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(b) Outdoor with omnidirectional TX/RX antennas

Fig. 8: The CDF of the estimation error for the case of (a)

directional TX/RX and (b) omnidirectional TX/RX antennas in

the outdoor environment, based on several experiments with up

to and including 9 people. It can be seen that we can estimate

the total number of people with a good accuracy.
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(b) Outdoor with omnidirectional TX/RX antennas

Fig. 9: Sample occupancy estimations, as a function of time,

for the case of (a) directional TX/RX and (b) omnidirectional

TX/RX antennas in the outdoor environment. It can be seen

that the estimation converges to within 1 person of its final

value in 100 seconds.

PMF of K (the number of simultaneous crosses) (Fig. 6d).

Let pK,exp denote this estimated PMF. We then find Nest,dir

such that it minimizes the Kullback-Leibler (KL) divergence

between the experimental and theoretical PMFs:

Nest,dir = argmin
M

DKL(pK,exp||pK,M ), (25)

where DKL(p1||p2) is the KL divergence [33] between the

two distributions p1 and p2. Fig. 6d also shows the theoretical

PMF of K for the case of three people. It can be seen

that the curve is very close to the experimental one. Fig. 7

further shows the corresponding KL divergence curve as a

function of M for a sample case for N = 3 in the outdoor

environment. It can be seen that the curve is minimized at

N = 3, resulting in the accurate estimation of N in this case.

Table I shows the performance of our approach for different

number of people, for a sample case in the outdoor environ-

ment. It can be seen that our approach can estimate the number

of people considerably well in this case. To see the variability

of the results in different runs, we further run 5 experiments

on 5 different days for each number of occupants indicated in

the first row of Table I. Fig. 8a show the resulting Cumulative

Distribution Function (CDF) of the estimation error of all the

cases (5 runs) in terms of the number of people for the outdoor



case and with directional antennas. It can be seen that, the

estimation error is 0 or 1 person 92% of the time and 2 or

less 100% of the time.

Number of People in the Area 1 3 5 7 9

Estimated Number of People 1 3 4 7 8

TABLE I: Sample performance of our approach for the case

of directional antennas in the outdoor environment.

So far, we have presented our results based on the collected

measurements of 300 seconds. In order to see the impact of

the measurement time on the estimation error, Fig. 9a further

shows occupancy estimation, as a function of time, for three

sample experiments in the outdoor environment. It can be

seen that the estimation converges to within an error of 1

of its final value after 100 seconds for these sample cases.

This suggests that a shorter time duration could have also

resulted in a similar performance in these cases. In general,

the time duration should be chosen such that the experiment

has reached its steady state. An upper bound for this time

duration can be obtained based on the size of the area, the

assumed walking speed, and an upper bound on the expected

number of people.

2) Estimation with Omnidirectional Antennas: In this sce-

nario, omnidirectional antennas are used at both the transmitter

and the receiver. Thus, both LOS and MP components need

to be considered, which makes the estimation process more

challenging. The PDF of the received signal amplitude is as

derived in (23), which is an implicit function of N . Let pexp

represent the PDF of the measured received signal amplitude.

Then, we estimate the total number of people through the

following KL divergence minimization:

Nest,omni = argmin
M

DKL(pexp||p|A|,M ). (26)

Table II shows the performance of our approach for dif-

ferent number of people for a sample case in the outdoor

environment. It can be seen that the estimation performance is

considerably good for this sample case. To see the variability

of the results in different runs, we further run 5 experiments on

5 different days for each number of occupants indicated in the

first row of Table II. Fig. 8b shows the resulting Cumulative

Distribution Function (CDF) of the estimation error of all the

cases (5 runs) in terms of the number of people.

It can be seen that the estimation error is 2 or less 96% of

the time, which is a good accuracy. As expected, probability

of error is higher as compared to Fig. 8a where directional

antennas were used. Fig. 9b shows occupancy estimation, as a

function of time, for sample experiments with omnidirectional

antennas. It can be seen that the estimation converges to within

an error of 1 of its final value after 100 seconds for these

cases as well. Finally, Fig. 10 compares the corresponding

experimental and theoretical PDFs for sample cases with

different number of people. Each plot shows the amplitude

PDF of the experimental data and the best fit theoretical PDF

obtained by minimizing the KL divergence. The resulting N
is then shown as Nest,omni. It can be seen that the experimental

and theoretical pdfs are matching well.
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Fig. 10: A Comparison of the theoretical PDF of (23) and

the experimental PDF for different cases (with omnidirectional

antennas) in the outdoor environment.



Number of people in the Area 1 3 5 7 9

Estimated Number of People 1 3 4 7 8

TABLE II: Sample performance of our approach for the case

of omnidirectional antennas in the outdoor environment.

B. Estimation of the Number of People in Indoor Environ-
ments

In this section, we show our results for estimating the

level of occupancy in indoor. The site details are shown in

Fig. 5b and summarized earlier in Section IV. The rest of

the experimental setup is the same as for the outdoor case.

As expected, the indoor environment will experience more

multipath effect due to static objects. Our results indicate that

we can still estimate the total number of people with a good

accuracy.
1) Estimation with Directional Antennas: Table III shows

the performance of our approach for different number of

people for a sample case in the indoor site when directional

antennas are used. In this case, (19) suffices to estimate the

number of people, as discussed earlier. It can be seen that

our approach can estimate the level of occupancy well in an

indoor setting. To see the variability of the results in different

runs, we further run 7 experiments on 7 different days for

each number of occupants indicated in the first row of Table

III. Fig. 11a then shows the resulting Cumulative Distribution

Function (CDF) of the estimation error of all the cases (7 runs)

in terms of the number of people for the indoor site. It can be

seen that the estimation error is 0 or 1 88% of the time and

2 or less 100% of time, showing a good performance.

Remark 3: In this paper, we have observed a good estima-

tion performance with only considering the LOS and static

objects for the directional case. However, since a typical

directional antenna will still measure some of the scattering

off of walking people, further improvement can possibly be

achieved if the whole proposed expression of Section III-B is

also utilized for the directional case.

Number of People in the Area 1 3 5 7 9

Estimated Number of People 1 3 4 6 7

TABLE III: Sample performance of our approach for the case

of directional antennas in the indoor environment.

2) Estimation with Omnidirectional Antennas: Next, we

test our proposed approach with omnidirectional antennas

in the indoor site of Section III-B). Table IV shows the

performance of our approach for different number of people

for a sample case. It can be seen that our approach can also

estimate the level of occupancy well in an indoor setting with

omnidirectional antennas. To see the variability of the results

in different runs, we further run 7 experiments on 7 different

days for each number of occupants indicated in the first row

of Table IV. Fig. 11b then shows the resulting Cumulative

Distribution Function (CDF) of the estimation error of all the

cases (7 runs) in terms of the number of people. It can be seen

that the estimation error is 2 or less 63% of time, confirming

a successful indoor performance with typical omnidirectional

antennas that come as part of the 802.11 WLAN cards.
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(a) Indoor with directional TX/RX antennas
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(b) Indoor with omnidirectional TX/RX antennas

Fig. 11: The CDF of the estimation error for the case of

(a)directional TX/RX and (b)omnidirectional TX/RX antennas

in the indoor environment, based on several experiments with

up to and including 9 people. It can be seen that we can

estimate the total number of people with a good accuracy.

Number of people in the Area 1 3 5 7 9

Estimated Number of People 2 3 8 10 11

TABLE IV: Sample performance of our approach for the case

of omnidirectional antennas in the indoor environment.

C. Final Remarks on the Experimental Results

Our results confirmed that our proposed approach can

successfully estimate the level of occupancy in both indoor

and outdoor environments with typical WLAN cards and

omnidirectional antennas, based on only WiFi power measure-

ments. As expected, if directional antennas are available, the

performance can further be improved by limiting the multipath

fading effects.

V. CONCLUSIONS

In this paper, we proposed a new approach for estimat-

ing the total number of people walking in an area with

only WiFi power measurements between a pair of stationary

transmitter/receiver antennas. More specifically, we separated

the impact of the crowd on the transmitted signal into two

key components: 1) blocking of the LOS and 2) MP effects

caused by scattering. By developing a simple motion model,

we first mathematically characterized the impact of the crowd



on blocking the LOS. We further probabilistically character-

ized the resulting multipath fading and developed an overall

mathematical expression for the probability distribution of the

received signal amplitude as a function of the total number of

occupants, which was the base for our estimation using KL

Divergence. In order to confirm our approach, we ran several

indoor and outdoor experiments with up to and including 9

people and showed that the proposed framework can estimate

the total number of people with a good accuracy.
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