Hover Hand
Fall Quarter Design Review

Austin Dorotheo, Steven Fields, Colin Garrett, Miclos Lobins, Zachary Meyer
Introduction

What is the Hover Hand glove?

- Glove that turns the hand into a quadcopter remote controller

What does a quadcopter remote controller do?

- Sends information to the quadcopter to tell it where to go
 - Throttle
 - Yaw
 - Pitch
 - Roll
Introduction

How does it work?

- 5 Inertial Measurement Units on the hand for sensing hand movements
 - 4 IMUs on fingers, with exception being the ring finger
 - 1 IMU on the top of the hand
- FRSky DHT 2.4GHz Antenna for establishing connection and communicating with the quadcopter
Hover Hand Team

Zachary Meyer - Project Lead, Parts Selection, Hardware/Software Interfacing
Austin Dorotheo - Software Development
Steven Fields - Hardware Development, PCB/Schematic design
Colin Garrett - Hardware Development
Miclos Lobins - Software Development
Bill of Materials

$116.72 spent on parts

<table>
<thead>
<tr>
<th>Designator</th>
<th>Manufacturer Part Number</th>
<th>Quantity</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>U5</td>
<td>MPU-9250</td>
<td>1</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>U2</td>
<td>TCA9548APWR</td>
<td>1</td>
<td>Multiplexer</td>
</tr>
<tr>
<td>J1,J2,J3,J4,J5,J7</td>
<td>640456-4</td>
<td>6</td>
<td>4-pin jumpers</td>
</tr>
<tr>
<td>J6</td>
<td>S2B-PH-SM4-TB(LF)(SN)</td>
<td>1</td>
<td>JST connector for battery</td>
</tr>
<tr>
<td>D1</td>
<td>VLMR5121AA-GS08</td>
<td>1</td>
<td>Red LED</td>
</tr>
<tr>
<td>R1</td>
<td>ESR03EZPF1502</td>
<td>1</td>
<td>15k</td>
</tr>
<tr>
<td>R2,R3,R4</td>
<td>ESR03EZPJ103</td>
<td>3</td>
<td>10k</td>
</tr>
<tr>
<td>R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R33,R34</td>
<td>ESR03EZPJ472</td>
<td>14</td>
<td>4.7k</td>
</tr>
<tr>
<td>R17</td>
<td>ESR03EZPJ205</td>
<td>1</td>
<td>2M</td>
</tr>
<tr>
<td>R18,R20</td>
<td>ESR03EZPZ2203</td>
<td>2</td>
<td>220k</td>
</tr>
<tr>
<td>R19</td>
<td>ESR03EZPJ125</td>
<td>1</td>
<td>1.2M</td>
</tr>
<tr>
<td>R23</td>
<td>ESR03EZPJ202</td>
<td>1</td>
<td>2k</td>
</tr>
<tr>
<td>C1,C2,C3</td>
<td>C0603C104K8RACTU</td>
<td>3</td>
<td>.1uF</td>
</tr>
<tr>
<td>C6</td>
<td>CL10A226MQ8NRNC</td>
<td>1</td>
<td>22uF</td>
</tr>
<tr>
<td>L1,L2</td>
<td>LQM18FN100M00D</td>
<td>2</td>
<td>4.7uH</td>
</tr>
<tr>
<td>B1,B3</td>
<td>LT1300CN8#PBF</td>
<td>2</td>
<td>3.3V voltage booster</td>
</tr>
<tr>
<td>B2,B4</td>
<td>MBRS130LT3G</td>
<td>2</td>
<td>schottky diode</td>
</tr>
<tr>
<td>C4,C7</td>
<td>GRM21BR60J107ME15L</td>
<td>2</td>
<td>100uF</td>
</tr>
<tr>
<td>U1</td>
<td>BL652-SA-01</td>
<td>1</td>
<td>nRF52832</td>
</tr>
</tbody>
</table>
Parts

Nordic nRF52832

- ARM Cortex M4 Microprocessor
- 64 MHz Clock Speed
- 512KB Flash
- 64KB RAM
- 1.8V-3.6V input supply
- 2.4 GHz transceiver
 - Supports Bluetooth Low Energy
 - RSSI
Parts

MPU-9250
- 9-axis IMU
- Contains 2 chips
 - MPU-6500
 - 3-axis gyroscope and accelerometer
 - Onboard Digital Motion Processor (with quaternion outputs)
 - AK 8963
 - 3-axis digital compass
 - Supports I²C and SPI
Parts

FRSky DHT 2.4GHz Transmitter

- Takes PPM input
- Bind button to connect to quadcopter
- Switch to change version of FRSky protocol 2-way vs. 1-way
- Handles much of the heavy lifting involved with RF Transmission
Parts

TI TCA9548APWR
- Multiplexer for I²C devices
- 8 Devices supported

Adafruit Lithium Ion Battery
- 500mAh capacity
- 3.7V output

LM1300 Voltage Converter
- Two used to convert to 3.3V and 5V
Power Distribution

- 3.7V Battery will be regulated to 3.3V and 5V
- No analog devices, so not necessary for different power planes of the same voltage
- Nearly all components Powered by 3.3V
 - Processor
 - IMU
 - Multiplexer
- FRSky RF module is the only component powered by 5V
Schematic
PCB
Software Development

Control Algorithms

- Four main inputs to quadcopter:
 - Roll
 - left/right angular hand movement
 - Pitch
 - forward/back angular hand movement
 - Yaw
 - left/right hand movement across the wrist
 - Throttle
 - upward/downward movement of the middle finger alone
Software Development

Signal Flow

- Quaternion inputs received from IMUs
 - Converts quaternions to Euler angles using algorithms
 - Used to calculate yaw, pitch and roll
- Yaw, pitch, roll, throttle converted to PPM signal
 - Values converted to quadcopter range
 - Range for quadcopter: 1000-2000
 - PPM output to GPIO pin
 - DHT transmitter converts PPM signal to FRSky RF protocol
 - FRSky flight controller receives signal
Conclusion

● Prototype PCB is out for production & assembly
 ○ Should be completed and sent to us in the next week
● Plans for Winter and Spring
 ○ Ensure valid operation of the prototype glove
 ○ We plan to do a respin with an updated design
 ■ Replace outdated parts with newly released parts
 ● nRF52832->nRF82840
 ● MPU-9250->ICM-20948
 ■ Change parts from the first prototype that were limiting board size such as the voltage converters and jumpers
 ■ Remove FRSky RF module and use bluetooth connection, which is built into the nRF52840
 ● We will need to add a bluetooth receiver to the quadcopter and most likely change signal output from PPM to accommodate the new method of communication
 ○ Tune Software algorithms using first prototype glove
 ○ Test bluetooth Tx/Rx design using first prototype glove
 ○ Implement special gestures for actions such as hovering in place, or emergency shutdown
Thanks to:
 Yogananda Isukapalli, Capstone Instructor
 Celeste Bean, TA
 Caio Motta, TA
 Arveng Technologies, Sponsor

Thank you for your contributions as well as making this possible!