Hover Hand
Winter Quarter
Review
Austin Dorotheo, Steven Fields, Colin Garrett, Miclos Lobins, Zachary Meyer
Hover Hand Team

Zachary Meyer - Project Lead, Parts Selection, Hardware/Software Interfacing
Austin Dorotheo - Software Development
Steven Fields - Hardware Development, PCB/Schematic design
Colin Garrett - Hardware Development
Miclos Lobins - Software Development
Introduction

What is the Hover Hand glove?

- Glove that turns the hand into a quadcopter remote controller

What does a quadcopter remote controller do?

- Sends information to the quadcopter to tell it where to go
 - Throttle
 - Yaw
 - Pitch
 - Roll
How does it work?

- 5 Inertial Measurement Units (IMUs) measure hand movements
 - 4 IMUs on all fingers except ring finger
 - 1 IMU on the back of the hand
- SoC processes measurements to interpret meaning of movements
- FRSky 2.4GHz Antenna establishes connection and communicates with the quadcopter
Parts: Microcontroller

Nordic nRF52832

- ARM Cortex M4 Microprocessor
- 64 MHz Clock Speed
- 512KB Flash
- 64KB RAM
- 1.8V-3.6V input supply
- 2.4 GHz transceiver
 - Supports Bluetooth Low Energy
 - RSSI
Parts: Sensor

MPU-9250
- 9-axis IMU
- Contains 2 chips
 - MPU-6500
 - 3-axis gyroscope and accelerometer
 - Onboard Digital Motion Processor (with quaternion outputs)
 - AK 8963
 - 3-axis digital compass
 - Supports I²C and SPI
Parts: Transmitter

FRSky DHT 2.4GHz Transmitter

- Takes PPM input
- Bind button to connect to quadcopter
- Switch to change version of FRSky protocol 2-way vs. 1-way
- Handles much of the heavy lifting involved with RF Transmission
Other Important Parts

TI TCA9548APWR
- Multiplexer for I²C devices
- 8 Devices supported

Adafruit Lithium Ion Battery
- 500mAh capacity
- 3.7V output

LM1300 Voltage Converter
- Two used to convert to 3.3V and 5V
Power Distribution

- 3.7V Battery will be regulated to 3.3V and 5V
- No analog devices, so not necessary for different power planes of the same voltage
- Nearly all components Powered by 3.3V
 - Processor
 - IMU
 - Multiplexer
- FRSky RF module is the only component powered by 5V
Control Algorithms

- Four main inputs to quadcopter:
 - Roll
 - left/right angular hand movement
 - Pitch
 - forward/back angular hand movement
 - Yaw
 - left/right hand movement across the wrist
 - Throttle
 - upward/downward movement of the middle finger alone
Software Development

Signal Flow

- Quaternion inputs received from IMUs
 - Converts quaternions to Euler angles using algorithms
 - Used to calculate yaw, pitch and roll
- Yaw, pitch, roll, throttle converted to PPM signal
 - Values converted to quadcopter range
 - Range for quadcopter: 1000-2000
 - PPM output to GPIO pin
 - DHT transmitter converts PPM signal to FRSky RF protocol
 - FRSky flight controller receives signal
Software Development

Quaternion Inputs:
- Stored in a 2-D float 5x4 matrix
 - 5 rows for 5 sensors
 - x,y,z acceleration vector
 - Rotation angle

Yaw, Pitch, Roll (YPR) Values
- Stored in a 5x4 float array
 - 5 rows for 5 sensors
 - Each index stands for yaw, pitch, roll, throttle

Pulse-Position Modulation (PPM) Array
- Stored in a 6-index uint array
 - 1 index for each ppm channel
Plan for Spring Quarter

- Receive two populated PCBs and attach them to two new gloves
- Tune software algorithms using current prototype as well as new gloves
- Create extended functionality to keep drone hovering in place or disable it with emergency shutdown.
Stretch Goals for Spring Quarter

- Use Bluetooth to send signals in addition to FRSky, enabling use of Bluetooth drones
- Create updated hardware design with the following changes:
 - Replace outdated parts with newly released parts
 - SoC: nRF52832->nRF82840
 - MPU: MPU-9250->ICM-20948
 - Change out parts from the first prototype that were limiting board size such as the voltage converters and jumpers
Thanks to:
 Yogananda Isukapalli, Capstone Instructor
 Celeste Bean, TA
 Caio Motta, TA
 Arveng Technologies, Sponsor

Thank you for all your contributions which make this possible!