Background

Exploring Mars
Background

- Humidity
- Water
- Oxygen
- Temp
- CO2
- Power
- Monitoring Life Support

Exploring Mars
Background

Exploring Mars

Meeting Science Objectives

- Instruments
- Deployment
- Robotic Assets
- Pictures
- Descriptions

Monitoring Life Support

Humidity Water
Oxygen Temp
CO2 Power

Instruments
Samples

Background
Overview
Hardware
Subsystems
Construction
Software
Interface
Demo
Conclusion
Background

- Humidity
- Water
- Oxygen
- Temp
- CO2
- Power

Monitoring Life Support

- Exertion
- Heart Rate

Monitoring Physiology

- Voice
- Video
- Other Audio
- Text

Supervising Communication

- Instruments
- Samples
- Deployment
- Robotic Assets

Meeting Science Objectives

- Pictures
- Descriptions

Managing Timeline

- Tasks
- Time on
- Position
- Accuracy
- Contingencies
1 or 2 seconds delay
Background

worst case: 20 minutes delay
Overview

Wireless, forearm wearable

Central database for location data, images, and other relevant metadata

Haptic alert mechanism and simplistic user interface
Overview
Hardware System

Processor

- PS
 - ARM A9
- BRAM
- DDR
- SD
- FPGA Artix 7
- C

Sensors

- Transceiver
- SPI
- GPS
- I^2C
- RS-232
 - Rangefinder
- UART
 - Camera
- I^2C
 - Haptic Motor
- I^2C
 - IMU
- SPI
- GPIO
- Display
- Buttons

Introduction
Background
Overview
Hardware
Subsystems
Software
Interface
Construction
Demo
Conclusion
Hardware System

Processor
- Python
- BRAM
- DDR
- SD
- ARM A9

PL
- FPGA Artix 7
- C

Communication
- Transceiver
- GPS
- SPI
- I^2C

Sensors
- RS-232
- UART
- I^2C
- IMU
- Rangefinder
- Camera
- Haptic Motor

GPIO
- Display
- Buttons
Hardware

- PYNQ FPGA - ZYNQ XC7Z020
 - 650MHz Dual-Core Cortex A9
 - 100MHz Artix-7
 - 512MB DDR3
 - 630KB BRAM

- Processing System (PS)
 - High-level Python-based custom drivers

- Programmable Logic (PL)
 - Low-level C-based custom driver
 - Customized FPGA overlay
Hardware

PCB Revisions

Rev. A:
- Focus on peripheral flexibility
- Robust headers

Rev. B:
- Simplified (removed some test features)
- Significantly smaller
 - 50% reduction in size
- Low profile
Subsystems

- Rangefinder
- OpenMV M7 Camera
- IMU
- Haptic Motor
Subsystems

- Rangefinder
- OpenMV M7 Camera
- IMU
- Haptic Motor
Subsystems

- Rangefinder
- OpenMV M7 Camera
- IMU
- Haptic Motor

Sensors
Subsystems

- Rangefinder
- OpenMV M7 Camera
- IMU
- Haptic Motor
Subsystems

- Nordic nRF24L01 Transceiver
- uBlox NEO-M8P GPS

Communication
Subsystems

- Nordic nRF24L01 Transceiver
- uBlox NEO-M8P GPS

Communication
Software

Embedded Software

Introduction
Background
Overview
Subsystems
Hardware
Software
Interface
Construction
Demo
Conclusion
Software

Database & User Interface
Interface

- User alerted through haptic feedback
- Tactile feedback (buttons)
- 5” 800x480 TFT Display
- Extremely simple, no room for confusion
- Four buttons to select, return, and navigate between options
- User can navigate into viewing and marking states
- Two effective states:
 - Selection of a point
 - Access to the data associated to a selected point

- Navigation buttons to cycle through points

- Each point contains important data
 - Type
 - Creator
 - Distance
Interface

- Two Working States
 - Image creation view
 - Tag creation/ image verification view

- Verification State allows users to select tags and confirm or retake the image
Interface

- Interrupts the user's current state when they are within 10m of a point

- User can then dismiss the alert to be returned to the state they were in last
Construction

- Project prototype box
- 3D printed mounts
- Velcro straps
- Challenges include:
 - Wire management
 - Peripheral placement
 - Antenna
 - Sensors
 - Buttons and dial
 - Durability (strain relief)
Questions?

Thanks to…
Jessica Marquez, Richard Joyce, Luke Theogarajan
Yogananda Isukapalli, Caio Motta, & Celeste Bean