Team
Saurabh Gupta, Brandon Pon
Bryan Lavin-Parmenter, Neil O'Bryan

Mentors
Jessica Marquez, Richard Joyce
Luke Theogarajan, Yoga Isukapalli, Caio Motta

NASA
Communicating data is TEDIOUS
Astronauts are **COSTLY**

$10-100$ thousand per *hour* of astronaut time

>100 hours spent outdoors on the moon
The SPOT Solution
System Architecture

- Power
- User Display
- Tactile Control
- GPS with RTK
- Antenna
- Home Base
- IMU
- PYNQ
- Haptic Motor
- Rangefinder
- Camera
- Heart Rate Monitor
- XBee Transceiver
- Antenna
Software Architecture

- Boot up
- Home base find and sanity check
- Peripheral monitoring
 - Add new data to local storage, remove old data
 - Perform peripheral-specific function
 - GPS
 - Relay to home base to get RTK data
- multiple threads
- thread
- display input
 - Get coordinates and relay to home base
 - Determine if object nearby
 - Alert user
What’s left?

Making the enclosure

- Refine design
- Build it

System integration

- Complete “peripheral” functionality
- Turning functionality into features
- Software backend to support features

Develop the UI

- Integration of peripherals with UI
- What will the astronaut see on the screen?
How to make this better?

Actual path-finding
Implement path-finding algorithm to get shortest & safest path

Satellite overlay
Map the actual satellite image for more accurate information

Hopping network
Expand the range by using other devices in the network
Team
Saurabh Gupta, Brandon Pon
Bryan Lavin-Parmenter, Neil O’Bryan

Mentors
Jessica Marquez, Richard Joyce
Luke Theogarajan, Yoga Isukapalli, Caio Motta