TiresiaScope
Fall Quarter Design Review

DEVON PORCHER, JOHN BOWMAN, BRIAN YOUNG, TIMOTHY KWONG, TREVOR HECHT
Introduction - What is the TiresiaScope?

• A proximity-sensing device for the blind
• Detects nearby objects with ranging sensors, recognizes text on signs with camera
• Relays information to user through sound: musical tones for object location, synthesized speech for text reading
Development Team

- Devon Porcher: Team Leader, Prototyping, Software Design
- John Bowman: System Design Lead, Software Design
- Brian Young: PCB Design Lead, System Design
- Timothy Kwong: Software Design Lead
- Trevor Hecht: Apparatus Design Lead
PYNQ

- Dual-Cortex ARM Cortex A9 processor supports coding in Python
- Individual Microblaze processors on FPGA control I/O for arduino and PMOD headers
- Microblazes communicate with processor using shared memory
- HDMI, USB, Ethernet also supported
- Audio out is mono only
Camera: OpenMV M7

- On board STM32F765VI ARM Cortex M7 processor running at 216MHz with 512KB of RAM and 2MB of flash
- The OV7725 image sensor is capable of taking 640x480 8-bit grayscale images or 320x240 16-bit RGB565 images at 30 FPS
Ultrasonic Sensor:
Ultrasonic Range Finder - LV-MaxSonar-EZ1

- Detection range: 160mm to 6.45m
- 20-Hz refresh rate
- Reliable and stable range data
- Pulse-Width, Analog, Pseudo-UART Interface options
- Operates at 5V
Optical Sensor:
Simblee™ IoT 3D ToF Sensor Module

- Detection range: 100 mm to 2 meters
- 10-Hz refresh rate
- Breakout Board for mounting
- I2C interface
- Operates at 3.3V
Audio Codec:
PCM3060

- Stereo audio output (and input)
- SPI or I2C control interface
- I2S, left-justified or right-justified formats for audio interface
- Used commonly in digital TVs
Printed Circuit Board
Schematic
Printed Circuit Board
Routing
Software

Python is used for the backend processing

Sensors

• Converts sensor value inputs into noise frequency outputs of a certain tone depending on the range

• Uses multithreading in order to have each sensor read and output values independently

Camera

• Will capture images caught into words and output using text-to-speech
Wearable Apparatus

Current plan:

- Skateboard helmet, with sections removed to make space for mounting

Mounting:

- PYNQ set into top of the helmet
- Camera at front
- Sensors distributed around all sides
Critical Elements

Text Recognition with the OpenMV camera
- Has on-board facial recognition, but not text recognition

Reliability of sensors
- Detecting lower objects
- Lighting for reliable images
Bill of Materials

<table>
<thead>
<tr>
<th>Part Label</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>Vendor</th>
<th>Vendor Part Number</th>
<th>Package/ Cell</th>
<th>Pins</th>
<th>Units</th>
<th>Unit Price</th>
<th>Total Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Components</td>
<td></td>
</tr>
<tr>
<td>Audio Codec</td>
<td>Texas Instruments</td>
<td>PCM3060PWR</td>
<td>Dipi-Key</td>
<td>298-38201-1-ND</td>
<td>TSSOP, SMT</td>
<td>24</td>
<td>1</td>
<td>$5.65</td>
<td>$5.65</td>
<td>Stereo Audio Codec</td>
</tr>
<tr>
<td>Headphone Jack</td>
<td>CUI Inc.</td>
<td>SJ-3523-SMT-TR</td>
<td>Dipi-Key</td>
<td>CP-3523SJTR-ND</td>
<td>Custom (Stereo Jack), SMT</td>
<td>4</td>
<td>1</td>
<td>$1.02</td>
<td>$1.02</td>
<td>3.5mm Stereo Jack</td>
</tr>
<tr>
<td>8-Way Multiplexer</td>
<td>Nexperia USA Inc.</td>
<td>74HC4051B8Q-115</td>
<td>Dipi-Key</td>
<td>1727-6049-1-ND</td>
<td>VFQFN, SMT</td>
<td>16</td>
<td>3</td>
<td>$0.45</td>
<td>$1.35</td>
<td>6 x 1 Multiplexer/Demultiplexer</td>
</tr>
<tr>
<td>8-Pin Header</td>
<td>Samtec Connector Solutions</td>
<td>GRPB081VWW-NC</td>
<td>Dipi-Key</td>
<td>S9014E-08-ND</td>
<td>Through-Hole</td>
<td>8</td>
<td>3</td>
<td>$0.72</td>
<td>$2.16</td>
<td>0.50" 8-Position Header Connector</td>
</tr>
<tr>
<td>4-Pin Header</td>
<td>Samtec Connector Solutions</td>
<td>GRPB041VWW-RC</td>
<td>Dipi-Key</td>
<td>S9014E-04-ND</td>
<td>Trough-Hole</td>
<td>4</td>
<td>1</td>
<td>$0.37</td>
<td>$0.37</td>
<td>0.50" 4-Position Header Connector</td>
</tr>
<tr>
<td>Total Cost:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$10.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headset Components</td>
<td></td>
</tr>
<tr>
<td>PYNO Microprocessor</td>
<td>Digilent</td>
<td>6003-410-017</td>
<td>Dipi-Front</td>
<td>6003-410-017</td>
<td>Development Board</td>
<td>54</td>
<td>1</td>
<td>$100.00</td>
<td>$100.00</td>
<td>Python Productivity for Zombie</td>
</tr>
<tr>
<td>Camera</td>
<td>SparkFun Electronics</td>
<td>SEN-14186</td>
<td>SparkFun Electronics</td>
<td>SEN-14186</td>
<td>Breakout Board</td>
<td>16</td>
<td>1</td>
<td>$68.75</td>
<td>$68.75</td>
<td>OpenCV MT Camera w/ ARM Processor</td>
</tr>
<tr>
<td>Optical Sensor Board</td>
<td>Adafruit Industries LLC</td>
<td>3317</td>
<td>Dipi-Key</td>
<td>1528-1814-ND</td>
<td>Evaluation Board</td>
<td>7</td>
<td>8</td>
<td>$14.95</td>
<td>$119.60</td>
<td>VLS30X Evaluation Board, 2m Ranging</td>
</tr>
<tr>
<td>Ultrasonic Sensor</td>
<td>SparkFun Electronics</td>
<td>SEN-00839</td>
<td>Dipi-Key</td>
<td>1568-1311-ND</td>
<td>Evaluation Board</td>
<td>7</td>
<td>8</td>
<td>$26.25</td>
<td>$210.00</td>
<td>LV-MAX Ultrasonic Range Finder</td>
</tr>
<tr>
<td>Total Cost:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$498.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Parts</td>
<td></td>
</tr>
<tr>
<td>Helmet Mount</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>3D-Printed Attachments for Components</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helmet</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Skateboard Helmet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headphones</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>1</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Stereo Headphones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

Moving Forwards:
• Prototyping full sensor system
• Camera functionality
• Designing software to function with the sound system

Thank you to professor Yogananda Isukapalli, Celeste Bean, and Caio Motta

Questions?