Ostracods are tiny crustaceans that create luminous courtship displays. WALL-E is a submersible low-light camera that can be deployed to analyze these patterns using computer vision techniques.

Overview
WALL-E is a two-part project: the hardware setup to effectively capture footage, and the computer vision pipeline (shown below) to extract 3D points from ostracod footage.

Key Components
- **Teensy 3.6 Development Board**
 - Microcontroller used to communicate with external modules
- **PAM-7Q-0 U-Blox GPS Module**
 - GPS to initialize timestamp on videos and gather location data on deployments.
- **Watec WAT-910HX/RC 570TVL Camera**
 - Low-light cameras that capture ostracod footage

Frame Synchronization Results
- Original: Left: Frame 743, Right: Frame 743
- Synchronized: Left: Frame 743, Right: Frame 743

Stereo Rectification Results
- Original:
- Synchronized:

Pulse Matching Results
- Left: Sample ostracod pulse pattern
- Right: Sample 3D mapped ostracod pulse pattern

3D Mapping Results

Final Product
Cameras and External Hardware

Printed Circuit Board with Soldered Components

Background
Ostracods are tiny crustaceans that create luminous courtship displays. WALL-E is a submersible low-light camera that can be deployed to analyze these patterns using computer vision techniques.

Acknowledgements:
Special thanks to Professor Yogananda Isukapalli, Professor Todd Oakley, Caio Motta, Celeste Bean, Trinity Locker-Cameron, Nicholai Hensley