In short: verify an astronaut’s fidelity to standard operating procedure.
A combination of three approaches:

1. Computer Vision
2. Sensor-embedded tools; IoT
3. Formalization of procedure writing
Computer Vision

- Real-time neural network-based object detection and localization
- Analyze the spatial relationships between objects to deduce semantics
- Static image analysis for deducing quality of astronaut-taken photographs
Problem Specification

Sensor-Embedded Tools

- Active NFC glove, coupled with passive NFC tools, to reliably identify current tool in use
- IMU in glove to detect macroscopic hand motion, e.g. swinging a hammer
- Bluetooth beacons for user localization
Procedure Formalization

- Context-free grammar specifically for expressing procedures in a way easily mapped to sense data
- Internally represent procedures with precedence graphs, rather than lists, to only capture strictly necessary ordinal relationships

```plaintext
<Mission> ::= <Task>+
<Task> ::= <Record Set> | <Image Set> | <Translate>

<Record Set> ::= <Record>+
<Record> ::= <Quantify> | <Qualify> | <Sample>
<Quantify> ::= <Verbalize> | <Write>
<Qualify> ::= <Verbalize> | <Write>
.Sample> ::= <Search> <Identify and Mark> <Collect Candidates>
<Collect Candidates> ::= [<Sterilization>] <Collect>+
<Collect> ::= <Isolate Sample> <Image Set> <Bag Sample> <Record Set>

<Image Set> ::= <Image>+
<Image> ::= <Picture> | <Video>
<Picture> ::= [<Place Guide>] <Take Picture>
<Video> ::= [<Place Guide>] <Take Video>

<Translate> ::= (<Move> [<Record Set>] [<Image Set>])+
```
Product Development Team

- **Ryan Lorica**: Lead, Computer Vision
- **Jingzhen Chen**: UI, IoT Algorithm Design
- **Anzhe Ye**: UI, IoT Algorithm Design
- **Jiacheng Liu**: PCB, Sensor Testing and Interfacing
- **Leo Mei**: PCB, Sensor Testing and Interfacing

All members will cooperate for sensor fusion
Processor

Nvidia Jetson TX2

- ARMv8 (64-bit) Multiprocessor CPU Complex
- 256 core Nvidia Pascal GPU
- Clock speed
 - CPU - Up to 2 GHz
 - GPU - Up to 1.3 GHz
- Power Requirement: 5.5V - 19.6V
- Peripheral Interfaces: I2C, UART, HDMI, USB
- Connectivity: Bluetooth Version 4.1
Problem Specification

Sensors

Adafruit PN532 NFC
- Detect current using tool
- Embed NFC chip in glove, tags in tools
- Range of transmission: 10 cm
- Interface: UART

GeeekPi 5 inch LCD Touch Screen
- Display tasks and remind errors
- Resolution: 800 x 480 pixels
- Power requirement: 5V via Micro-USB
- Interface: HDMI
Sensors

Bluetooth Unit

- On-board Bluetooth Version 4.1
- Receive signal from a bluetooth beacon
 - Approach a site
- Lose signal from the bluetooth beacon
 - Leave the site

Bluetooth Beacon

- Localization
- Embed in marker
- One-way transmission
- Range of transmission: 1 m (expected)
Sensors

- Adafruit 9-dot BNO055 IMU Breakout
 - Communicates via I2C
 - Memory-mapped addressing to specify sensor, which allows for reading specific data

- Sensors used:
 - Accelerometer
 - ±2/±4/±6/±8/±16 g ranges.
 - Accuracy: ±60mg
 - Data rate: 100Hz
 - Gyroscope
 - ±245/±500/±2000 degree per second ranges.
 - Accuracy: ±10/±15/±75
 - Data rate: 100Hz

- Successfully tested on TX2
Bill of Materials

<table>
<thead>
<tr>
<th>Part Label</th>
<th>Manufacturer</th>
<th>Manufacturer Part Number</th>
<th>Unit Price</th>
<th>Total Units</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth beacon</td>
<td>Radius Networks</td>
<td>B0DJ4P864</td>
<td>$14</td>
<td>1</td>
<td>$14</td>
</tr>
<tr>
<td>IMU</td>
<td>Adafruit</td>
<td>BNO055</td>
<td>$35</td>
<td>1</td>
<td>$35</td>
</tr>
<tr>
<td>TX2</td>
<td>NVIDIA</td>
<td>945-82771-0000-000</td>
<td>$569.99</td>
<td>1</td>
<td>$569.99</td>
</tr>
<tr>
<td>NFC breakout</td>
<td>Adafruit</td>
<td>PNS532</td>
<td>$42.36</td>
<td>1</td>
<td>$42.36</td>
</tr>
<tr>
<td>NFC tag</td>
<td>Adafruit</td>
<td>/</td>
<td>$0.70</td>
<td>10</td>
<td>$7.00</td>
</tr>
<tr>
<td>LCD display screen</td>
<td>Geeeipi</td>
<td>EP-0081</td>
<td>$54.99</td>
<td>1</td>
<td>$54.99</td>
</tr>
<tr>
<td>Camera</td>
<td>Logitech</td>
<td>C920</td>
<td>$49.99</td>
<td>1</td>
<td>$49.99</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$763.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RefDes</th>
<th>Description</th>
<th>Manuf Part #</th>
<th>Part Order #</th>
<th>Vendor</th>
<th>Unit Price</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>IMU ACCEL/GYRO/MAG 12C 28LGA</td>
<td>BNO055</td>
<td>828-1058-1-ND</td>
<td>Digi-Key</td>
<td>$12.07</td>
<td>1</td>
</tr>
<tr>
<td>U2</td>
<td>NFC Chip PN532</td>
<td>PN5321A3HN/C106,55</td>
<td>771-PN5321A3HN/C10</td>
<td>Mouser</td>
<td>$10.86</td>
<td>1</td>
</tr>
<tr>
<td>U3</td>
<td>IC REG LINEAR 3.3V 150MA SOT23-5</td>
<td>MIC5225-3.3YM5-TR</td>
<td>576-2080-1-ND</td>
<td>Digi-Key</td>
<td>$0.40</td>
<td>1</td>
</tr>
<tr>
<td>SV1</td>
<td>Connector Header Through Hole 9 position 0.050" (1.27mm)</td>
<td>GRPB0911VWVNC-RC</td>
<td>59014E-9-ND</td>
<td>Digi-Key</td>
<td>$0.72</td>
<td>1</td>
</tr>
<tr>
<td>SV1P</td>
<td>Connector Header Through Hole 8 position 0.050" (1.27mm)</td>
<td>GRPB0811VWVNC-RC</td>
<td>59014E-8-ND</td>
<td>Digi-Key</td>
<td>$0.72</td>
<td>1</td>
</tr>
<tr>
<td>Y1</td>
<td>32.768KHz Crystal</td>
<td>ABS25-32.768KHZ-T</td>
<td>535-9166-1-ND</td>
<td>Digi-Key</td>
<td>$0.63</td>
<td>1</td>
</tr>
<tr>
<td>Y1P</td>
<td>27.12MHz Crystal</td>
<td>ABM8-27.120MHZ-B4-T</td>
<td>535-13469-1-ND</td>
<td>Digi-Key</td>
<td>$0.79</td>
<td>1</td>
</tr>
<tr>
<td>SW1P</td>
<td>SWITCH SLIDE DIP SPST 25MA 24V</td>
<td>1571983-3</td>
<td>450-2128-1-ND</td>
<td>Digi-Key</td>
<td>$2.32</td>
<td>1</td>
</tr>
<tr>
<td>LED1P</td>
<td>LED RED DIFFUSED 0805 SMD</td>
<td>LS R976-NR-1</td>
<td>475-1278-1-ND</td>
<td>Digi-Key</td>
<td>$0.38</td>
<td>1</td>
</tr>
<tr>
<td>TP1, TP2, TP3, TP4, TP5, TP6, TP7</td>
<td>Test Points</td>
<td>5016</td>
<td>36-5001CF-ND</td>
<td>Digi-Key</td>
<td>$0.41</td>
<td>1</td>
</tr>
<tr>
<td>R6, R7</td>
<td>4.7KOhms Resistor</td>
<td>SG73G2ATTD4701D</td>
<td>660-SG73G2ATTD4701D</td>
<td>Mouser</td>
<td>$0.23</td>
<td>2</td>
</tr>
<tr>
<td>R3, R4, R5, R7P, R9P, R10P</td>
<td>10KOhms Resistor</td>
<td>SG73G2ATTD1002D</td>
<td>660-SG73G2ATTD1002D</td>
<td>Mouser</td>
<td>$0.23</td>
<td>6</td>
</tr>
<tr>
<td>R3P, R4P</td>
<td>1.50Khz Resistor</td>
<td>CRMO08500-JW-1R5ELF</td>
<td>652-CRMO08503JW1R5ELF</td>
<td>Mouser</td>
<td>$0.10</td>
<td>2</td>
</tr>
<tr>
<td>R2P</td>
<td>1.69Kohms Resistor</td>
<td>ERJ-U066F1619V</td>
<td>667-ERJ-U066F1619V</td>
<td>Mouser</td>
<td>$0.16</td>
<td>1</td>
</tr>
<tr>
<td>R1P, R8P</td>
<td>1Kohms Resistor</td>
<td>SG73G2ATTD1001D</td>
<td>660-SG73G2ATTD1001D</td>
<td>Mouser</td>
<td>$0.23</td>
<td>2</td>
</tr>
<tr>
<td>R5P, R6P</td>
<td>Not connected, no value, use for replacement</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C1, C2, C1P, C2P</td>
<td>22µF Capacitor</td>
<td>C0805C220F4HAC</td>
<td>AUTO</td>
<td>Mouser</td>
<td>$0.31</td>
<td>4</td>
</tr>
<tr>
<td>C3, C4, C11P, C14P, C16P, C17P, C23P, C24P</td>
<td>0.1µF Capacitor</td>
<td>C0805C104K3RAC7201</td>
<td>399-7365-2-ND</td>
<td>Mouser</td>
<td>$0.03</td>
<td>8</td>
</tr>
<tr>
<td>C5P, C6P, C9P, C10P</td>
<td>Not connected, no value, use for replacement</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>C7P, C8P</td>
<td>100µF Capacitor</td>
<td>C0805C101FCGACTU</td>
<td>80-C0805C101FCG</td>
<td>Digi-Key</td>
<td>$0.48</td>
<td>2</td>
</tr>
<tr>
<td>C3P, C4P</td>
<td>220µF Capacitor</td>
<td>25115S221J4VE</td>
<td>712-1398-1-ND</td>
<td>Digi-Key</td>
<td>$0.51</td>
<td>2</td>
</tr>
<tr>
<td>C18P, C19P, C21P, C25P, C26P</td>
<td>10µF Capacitor</td>
<td>100R5X1506K4VE</td>
<td>709-1228-1-ND</td>
<td>Digi-Key</td>
<td>$0.75</td>
<td>5</td>
</tr>
<tr>
<td>C15P</td>
<td>1000µF Capacitor</td>
<td>0805S5A102GAT2A</td>
<td>478-3760-1-ND</td>
<td>Digi-Key</td>
<td>$0.61</td>
<td>1</td>
</tr>
<tr>
<td>C12P, C13P</td>
<td>33µF Capacitor</td>
<td>CBR808C3301JGAC</td>
<td>80-CBR808C3301JGAC</td>
<td>Mouser</td>
<td>$0.52</td>
<td>2</td>
</tr>
<tr>
<td>L1P, L2P</td>
<td>FERRITE BEAD 120 OHM 0603 1LN</td>
<td>MMZ1608B121CTAH0</td>
<td>445-2164-1-ND</td>
<td>Digi-Key</td>
<td>$0.10</td>
<td>2</td>
</tr>
<tr>
<td>L3P, L4P</td>
<td>560nH Inductor</td>
<td>PE-0805CM561JTT</td>
<td>553-1047-1-ND</td>
<td>Digi-Key</td>
<td>$0.42</td>
<td>2</td>
</tr>
<tr>
<td>Total Price</td>
<td>$44.34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Software Development

Software Architecture - Overview

Problem Specification

Software Development
Problem Specification

Overall structure flow ...

Task Controller

Two main part:

- **Task Manager:**
 Controlling the overall tasking flowing.

- **Procedure Manager:**
 Controlling the little procedures in each task.

When Task Manager switch to a new task, Procedure Manager activated;

Then Procedure Manager will send information to the **signal processing part**;

(next slide)

When all procedures in Procedure Manager finished, user can go to the next task.
In Signal and Data Processing part, two modules used to process signal:

- **Signal Request**
 Receiving information from Procedure Manager, (which signals needed to check ...)
 Then sending the signal request to the parts (IMU, Bluetooth, NFC, Camera)

- **Signal Receive**
 Receiving the processed signal response from **Data and Signal Processor** (next slide)
 Then sending a completion signal to Procedure Manager, indicating the procedure completed
Software Development

Software Architecture - Overview
Software Development

Overall structure flow (continued) ...

Core Module in Data and Signal Processing part:

- Including all the algorithms used to process the signal and data coming from PARTS: (such as Video Processing)

- When the processor received data feedback from the PARTS, it would analyze this data and decide whether they satisfied the procedure’s request or not.

- If satisfied, it would send the signal response to Signal Receive Module;

- If not, it would send a signal request to Signal Request Module and do this procedure again; at the same time, it will alert users on LCD Screen.
UI Overview

- Synopsis of current task.
- Status of current task, using different color to indicate each kind of state.
- Three buttons at bottom to help user switch tasks.
- Hint of details.

![Current Task](image)

- **Green** -- “Done”
- **Gray** -- “Waiting”
- **Yellow** -- “In-progress”
- **Red** -- “Warning”
UI Detail Windows

Current Task Detail:

1. Use the bluetooth and body camera to search the samples;
2. Use the body camera to identify those target samples;
3. Use the hammer to collect some samples.

- Click left part of main interface to show the task detail.
- Click right part of main interface when working status is “Warning” to show the detail for...
UI overview

- Press “Back” to the last task.
- Press “Review” to task list window.
- Press “Check” to end the whole procedure.
Acknowledgements

Thank you to:

Dr. Yogananda Isukapalli

Carrie Segal

Brandon Pon

Dr. Jessica Marquez (NASA)

Dr. Richard Joyce (NASA)

Laritech

for all of your assistance with the project.