

Background

UAV capabilities continue to improve as the drone industry and the technology develops. With malicious intent, drones can pose a serious threat to national security as well as personal privacy. Drone Scout is an Xband radar system capable of detecting a small drone and identifying several of its features.

Design Specification

- Operates X-band radar at 9 GHz
- Performs Short-Time Fourier Transforms (STFT) on the incoming radar data
- Analyzes the STFT results to determine drone presence in the radar's target
- If a drone is present, further analyzes the results to extract features of the drone such as propeller tip velocity, blade length, and RPM
- Continually updates display with results

Acknowledgements: Special thanks to Duane Gardner, Martin Fay, and Rory McCarthy from LGS, as well as Yogananda Isukapalli, Brandon Pon, and Carrie Segal from UCSB.

Drone Scout Anthony Chen | Austin Hwang | Maga Kim | Sungin Kim

Printed Circuit Board

- Radar signals are amplified and routed to the PYNQ
- Potentiometers allow adjustments to the gain and DC offset of the amplifier circuits
- UI switches and LEDs are routed through the board

Key Components

PYNQ-Z1 Development Board • Dual-core ARM Cortex-A9

- CPU

Pmod AD1

AD620

 Artix-7 FPGA • 512MB DDR3 memory

• Two channels, 12-bit precision • 1 MSPS throughput rate • SPI interface protocol

• Gain range of 1 to 10,000 • Adjustable ground reference voltage at output • Potentiometers set the gain

and DC offset for one channel

Final Product

Blade

Drone:	True	cy (Hz)
Max Doppler:	3900	r Frequenc
RPM:	15000	Dopple
Tip Velocity:	64 m/s	
Blade Length:	3 in	

 Our PCB mounts directly to the PYNQ-Z1 board • The two communicated via the Arduino shield connectors and the PMOD ports on the PYNQ

Feature Extraction Results

• The plot above shows the STFT, a 2D representation of the radar signal's frequency magnitudes over time • By identifying patterns in the STFT, we determine the presence of a drone, along with some of its features

UC SANTA BARBARA **College of Engineering**