reihlo.com
github.com/reihlo

Gestur

by reihlo

Kyle Carson, Ryan Kaveh, Jon Young, Ryan Lee, Ryan Tsukamoto

Introduction & Vision Glove Design

Virtual Reality (VR) promises to be the next step in human-machine interaction; from e 20 flex sensors, 10 LRAs, 4 touch sensors and 1 IMU sewn into glove for strain relief
films to video games to enterprise, there is an immense potential for immersion.

Current VR tools are limited to bulky setups with unwieldy controllers, none of which e Flex sensors are situated around all finger and hand joints, while motors target large
can accurately track fine motor movements in 3D spaces. The Gestur Glove aims to muscle groups and areas with highest nerve ending densities

further user immersion in VR environments. Using an array of different sensors, Gestur

can wirelessly track a user’s fingers and hand movements, while simultaneously e |[MU sits behind the palm to provide the smoothest tracking

providing feedback based off of virtual interactions. Our glove is a prototype for the

immersive, wireless and universal controllers we aim to build in the future. e Challenges: glove longevity, component modularity, and cable management

System Overview

The PCB reads touch, flex, and motion tracking data from the glove, frames/packages
the measurements, and sends them to the host computer for processing. When the
user interacts with VR objects, the host computer sends haptic data to the glove.

Programming/COM Feedback Network
LRA Driver Bank
ADC Bank
SSP

Linear Resonant
Actuators

Figure 3: A 3D model of the glove’s construction

Motion Tracking

e Flex sensors measure joints

Microcontroller
(LPC4088FBD208) Sensor Network

Touch Sensors Flex Sensors

e Extrapolate fine finger movement with LPF

Data Transfer

e MU tracks hand movement in 3D space
LiPo Batteries Micro USB Bluetooth Modules S S Prm— AHRS Module

e Transmitted wirelessly via bluetooth to host

Figure 1: Gestur PCB block diagram computer

lterative Development

e First Gestur board was
development kit for the embedded

software design HaQﬁC Feed baCk

e Built with Individually controlled LRAs

e Applications beyond VR: medical & design

Figure 4: Flex sensors and IMU

e With Laritech’s support and
capabilities, the second board
used BGA packages, new motor
drivers for the LRAs, & smaller
components

e Targets large muscle groups & areas with
highest densities of nerve ending

e Can provide varying responses to simulate
different textures or degrees of pressure

e Second spin is “80% smaller than
the first (from 8.6” x 7.9” to 5.5” x
2.57)

e Triggered via bluetooth signal form host
computer

AT

T B <

LS DR
STNTENRTRTETE

e | e Second board smaller than a
Figure 2: Gestur PCB Rev 1 and Rev 2 at relative scale conve ntiona| smartphone Figure 5: Haptic feedback motors (LRAS)

(%N UC SANTA BARBARA e
| ECE 189A/B: UCSB Computer Engineering Capstone (2016 - 2017)

W engineering

Software Overview

The software is divided into two primary parts: the embedded software running on the
board and the application software running on the host computer. The embedded code
handles all of the sensing, data processing, and data-packing needed to transmit the
glove’s state. The application code provides a core API four separate components. Both
parts interface using COM ports to asynchronously send and receive data via

Embedded

e FSM handles all I/O - State transitions depend on the input data from bluetooth

* Input transitions are interrupt-based; bluetooth transitions are cyclic/host dependent
e Output data is obtained via mixed polling and interrupting

e Goes into low power state when idle

Application

e Gestur Core APl (GCORE) creates abstractions for all serial communication and
representation of the glove’s data

e Gestur Model Data Generator (GMDG) uses GCORE to emulate the glove in software,
providing a WPF GUI interface

e Gestur API (GAPI) is built on GCORE to provide a higher-level APl abstraction

e TouchBox is a demonstration game built using the Unity engine

By developing GMDG before the second revision of the board was finished, we were

able to forward-develop the rest of the application software without a physical glove.

We used comOcom to establish virtual pairs of COM ports on the same computer,

creating a pipeline with the GMDG simulated glove and any application software that

would later be interacting with the physical glove.

Figure 6: Forward-development pipeline out of GMDG, through comOcom, and into TouchBox

Acknowledgments

Thank you Bill, Lilly, Kristin, Veronica, Eddie, and everyone else from Laritech for
making all of this possible. Thank you Caio, Celeste, and Will for always helping us at a
moment’s notice. Thank you John Johnson for sticking around one last year to guide us
with Gestur. Thank you Yoga Isukapalli for helping organize this year’s Capstone events.
Thank you Forrest Brewer and Yon Visell for your consultation and advice. Lastly, thank
you to the College of Engineering for additional funding and support.

LARITECH, INLC.

ODM SOLUTIONS




