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STABILITY

MAGNETIC LEVITATION
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ELECTRONICS

ePod travels along central I-Beam
ePair of stability wheels keeps pod on track, prevents
rotation around y-axis (yaw)
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Figure 1: SpaceX Track Cross-Section

BRAKING

Figure 2: Pod Motion Along Test Track

eRubber pads clamp onto central I-beam, can slow from a
speed of 2000mph in 17 seconds
e Two pairs of brakes, each pair can stop pod on its own

Figure 3: Braking System and |-Beam, Red Keep-Out Zones

HYBRID DESIGN

e\Wheels provide best stability at operating speed
eCart/Payload design:
o Cart: stable, rigid outer frame, has stability wheels,
brakes, and drag racing wheels
o Payload: Moves vertically along linear bearings.
MagLev engines support the weight of electronics and
battery banks
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eVotion of magnets generates eddy currents in conductive
surface, which creates an opposing magnetic force that lifts
pod

e Utilizes Halbach arrays, maximizes field strength below
pod, minimizes interference with electronics

STRONG SIDE

WEAK SIDE

Figure 5: Arx Pax HE3.0 Engine
eThe faster the magnet moves over the surface, the more
lift is generated. Engines more efficient when rotating faster
and moving at higher speeds over track

Force vs. Velocity, Single Engine, Passive Translation, 10mm Hover

Figure 6: Halbach Array Magnetic Field

Velocity (m/s)

Figure 7: Magnetic Levitation Force and Drag vs. Translational Velocity

THERMAL CONSIDERATIONS

eHeat is sunk into aluminum frame, thermal jackets
e Subsystems individually tested to ensure performance in
low pressure environment

Motor Coil Temperature withiwithout Thermal Jacket
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ePowered by lightweight lithium polymer batteries.
Batteries source 3.8 kilowatts of power to MagLev
engines and subsystems

eSensor array records pod temperature, power
consumption; position, and subsystem status
e\Wirelessly transmits information through web app
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Figure 10: Subsystem Boards and Power Distribution Moumed in Pod

CONTROL SCHEME

eEach subsystem has state machine, ensures all
behavior is controlled and characterized

eBraking has most safety checks, only deployed after
time/distance threshold surpassed and no longer
accelerating

BRAKING PROFILE

BRAKING ALLOWED
Done accelerating?
How much track s left?

NO BRAKING MANDATORY BRAKING
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After distance Dyy;,, After time T, braking

braking is permited engaged automatically
Figure 11: Braking Subsystem Control Scheme
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