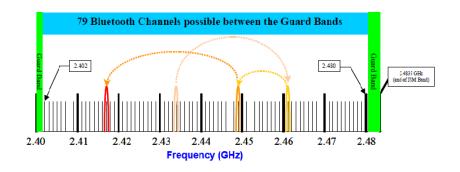
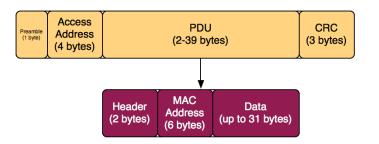


LGS/CACI Capstone Fall 2019 Presentation


By Zachary Battles, Chris Chan, Griffin Danninger, and Jeff Longo


What is BlueDentist?

Bluetooth monitoring using wide band software-defined radios and GPU processing

A Bit About Bluetooth

- Limited to ~10 m
- Spread spectrum frequency hopping on 79 channels
- Device announces presence when in discoverable mode
- 48 bit unique addresses

Problems / Solutions

Bluetooth not advertised

BlueDentist identifies and

records all activity

SDRs are labor intensive to

GPU allows for protocol

flexibility

reprogram

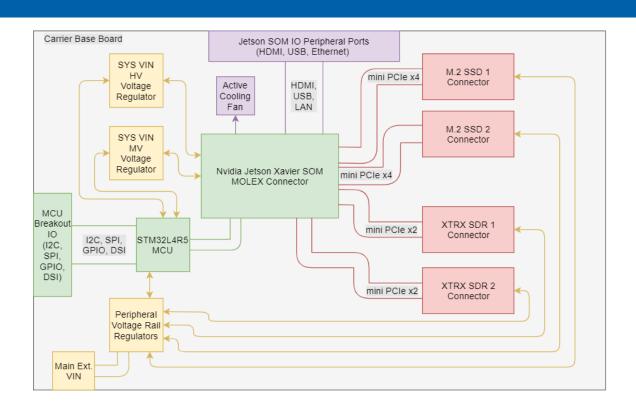
SDRs output large amounts

GPU parallelizes computation

of data

Team

Jeff Longo - Project Lead, Hardware design: board implementation/layout


Chris Chan - Hardware design: part selection, schematic

Zachary Battles - System integration and software design: Radio/SSD integration

Griffin Danninger - Software design: Bluetooth parsing, CUDA processing

Design Overview

Hardware Block Diagram

Key Hardware Components

Bluetooth Radios: XTRX

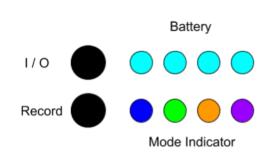
- Mini PCle 2.0
 - Max Throughput: 7000 Mbps,292 Msps (Limiting factor)
- 12 bit DAC/ADC Resolution
- Bandwidth: 30 MHz to 3.7 GHz

System GPU: Nvidia Jetson Xavier

- 512-Core Volta GPU with 64 Tensor cores
 - 11 TFLOPS (FP16)
 - 22 TOPS (INT8)
- 8-core Carmel ARM v8.2 64-Bit CPU
- 16GB 256-bit LPDDR4x
- Supports HDMI, USB, PCIe, and Gigabit Ethernet

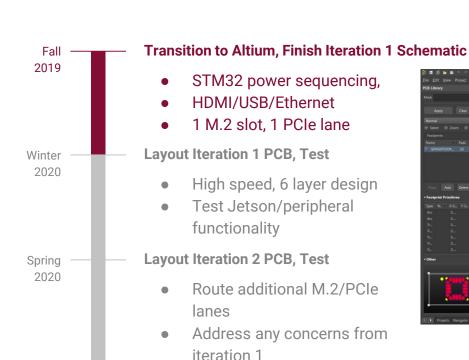
Supervisor MCU: STM32L4R5ZIT6

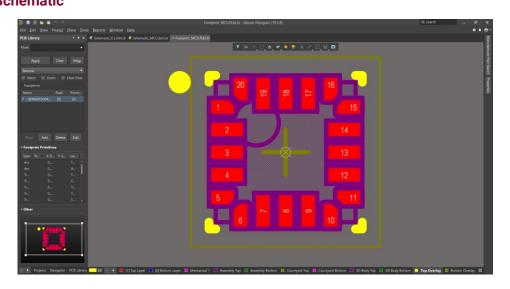
- 120 MHz, 2 MB flash, 640 kB RAM
- 4x I2C, 3x SPI, 6x USART, USB OTG
- Readily available Nucleo development board targeting chosen MCU

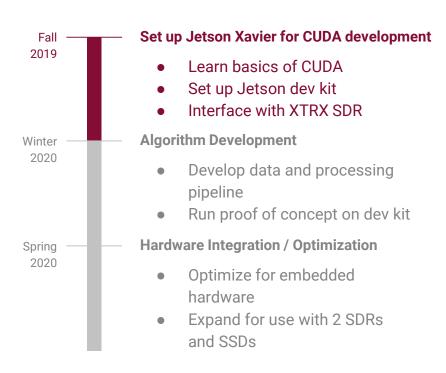

Key Software Processes

Software Processes

- Data ingestion and processing
- Data storage
- Post-processing and analysis
- Off-device monitoring program (interface over IP)


User Interaction


- Power button
- Record Start/Stop button
- Battery status indicator
- Operating mode indicator
- Interfaceable over IP for:
 - Live monitoring
 - Data analysis and downloading


Progress So Far and Roadmap

Hardware

Software


```
#include <cuda runtime.h>
vectorAdd(const float *A, const float *B, float *C, int numElements)
    if (i < numElements)
       C[i] = A[i] + B[i];
    cudaError t err = cudaSuccess:
    size t size = numElements * sizeof(float);
    printf("[Vector addition of %d elements]\n", numElements);
    float *h A = (float *)malloc(size);
    float *h B = (float *)malloc(size);
```

Questions?