

Geographic Environmental Module

CE Capstone

Development Team

Michael Sanchez	Software Development
Alejandro Diera	Software Development
Larry Mai	PCB Design
Yuen Ming Pang	PCB Design
Sawyer Essabhoy	Testing

Problem Description

- Climate change
 - 8,000+ wildfires in CA, 2021
 - 2.6 million acres destroyed
- Agriculture
 - Over 2 million US farms
 - Over 100,000 farms lost in the past 10 years
- GEM can monitor environmental conditions and determine agricultural sustainability

Data Flow

interfaces

cloud

presentation

Block Diagram

- Multiple Nodes
- Single Receiver

Temperature & Humidity

• DS18B20

- External Temperature
- Waterproof

• DHT22

- Internal Temperature and Humidity
- 1-Wire GPIO interface
 - Bidirectional half duplex
 - Millisecond timer
- Programmable resolution
 - 9 to 12 bits

Light & Moisture

- SparkFun Soil Moisture Sensor
- PCELL2 Photoresistor
 - Calibration
 - Lux meter
 - Lookup table
- Shared ADC input
 - Distinct channels
- Corrosion resistant

Pressure & GPS

• PA101D

- GPS NMEA Sentences
- Longitude & Latitude
- UART Interface

• BMP180

- Barometric Pressure
- Altitude
- High/Low Pressure Systems
- I2C Interface

ESP32 LoRaWAN Gateway

• ESP32-WROOM-32E

- ESP32 is a multi-network devices that offers connectivity with UART, I2C, SPI, and WiFi
- RFM95W LoRa modem
 - handles 915 MHz spectrum for LoRa transmissions
- Together, it forms a low cost tool for monitoring up to a dozen LoRa devices.

Schematic

↓EDPU LED -MAN-10

PCB Layout

Assembled PCB

Second Design

Integrated Power Supply

More compact

Restructured

Long Range Wide Area Network

Low Power Long Range Long Range

Standardized

LoRaWAN Infrastructure

For the transmitter:

- They are set up as individual nodes, each PCB has one ESP32 that will receive messages from the STM32 processor via UART
- It then transmits the message over the LoRaWAN protocol on the 915 MHz spectrum

LoRaWAN Infrastructure

For the receiver:

- A single gateway could connect up to 12 LoRa transmitters.
- Programmed to read for transmissions that are periodically sent from the transmitters.
- LoRaNow Library
 - Unique node identification
 - Checksum
 - Used to verify if data is corrupted

Data Analysis

Read COM Port

LoRa messages are received by the gateway and displayed on the terminal via UART

Plot

The data is plotted and displayed to the user

Unpack Data

MATLAB opens the COM port and begins to unpack the data, remove delimiters, etc.

Sample Plots

Acknowledgements

- Dr. Yoga IsukapalliChristopher Cheney
- Brycen Westgarth

Lead sponsor of CE Program