SHYPER P

Final Presentation Spring 2017

SENSORS & CONTROLS

CEs: Yang Ren, Jesus Diera, Asitha Kaduwela, Tristan Seroff EEs: Brian Canty, Ricardo Castro, Kevin Kha

Sucsanta barbara engineering

Team

Overview

Structure

tabilization

Levitation

Braking

Electronics

Power

Thermal

ogistics.

CONTENTS

- Overview
- Hardware
- Maglev
- Actuators
- Navigation
- Power
- Control Systems
- Pod Run
- Testing
- Conclusion

Team

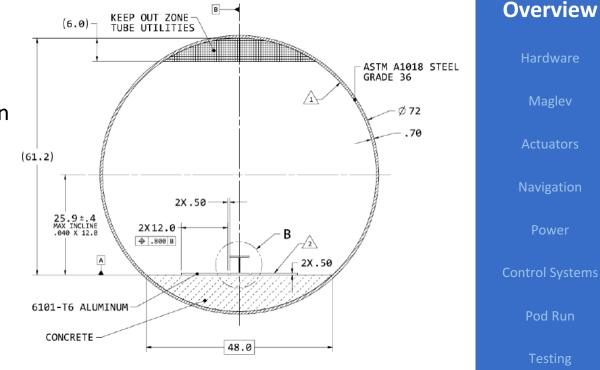
Overview

Hardware

Maglev

Actuators

Navigation

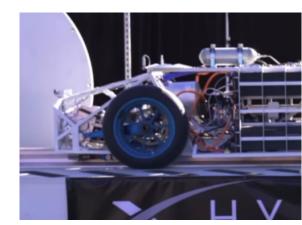

Power

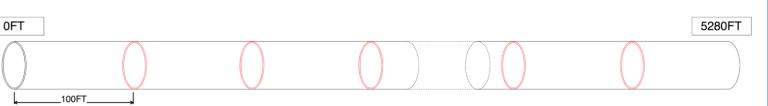
Control Systems

Pod Run

SPACEX COMPETITION

- SpaceX has constructed a mile long test track to develop technology through open competition
- Task: Design a Hyperloop Pod
- Main criteria of success: top pod speed
 - Our pod's max theoretical speed is 205mph




UC SANTA BARBARA engineering

SPACEX COMPETITION

Reducing project complexity

- Photo-reflective tape strips every 100 ft for navigation
- Pod pusher for propulsion
- I-Beam for stabilization
- Network Access Panel for communications

engineering

Team

Overview

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

Pod Run

DESIGN SUMMARY

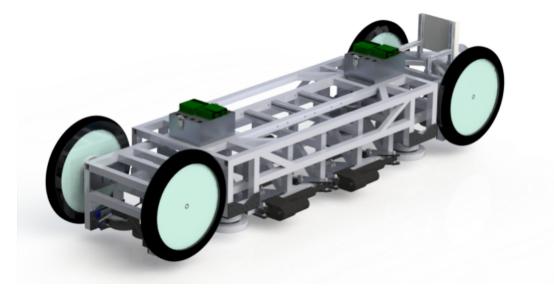


Figure: UCSB Hyperloop proposed design

Team

Overview

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

Pod Run

Testing

FRAME

- Made of Al-6061 Tubes
- Cart chassis (green)
 - Rides on drag wheels
 - Supports stabilization and braking
- Payload chassis (blue)
 - Levitates on maglev motors
 - Floats on linear bearings (red)
 - Supports the payload.

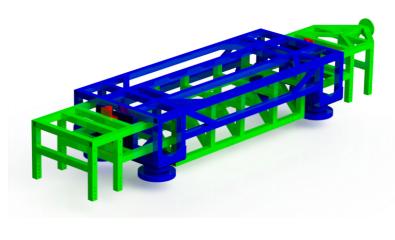


Figure: Pod Chassis

UC SANTA BARBARA engineering

Team

Overview

Hardware

Maglev

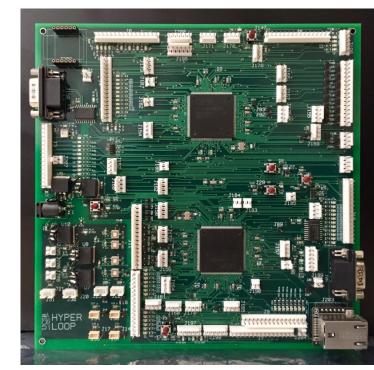
Actuators

Navigation

Power

Control Systems

Pod Run


HARDWARE

Pod Control Board (PCB)

- Designed by the 2015-2016 team
- Two (2) LPC4088 chips
- Three (3) I2C ports
- Two (2) SPI ports
- Lots of GPIO + ADCs
- Ethernet module

PCB Code

- Pod control system
- Actuation & data collection
- Communication & telemetry w/ web app

UC SANTA BARBARA engineering

Team

Overview

Hardware

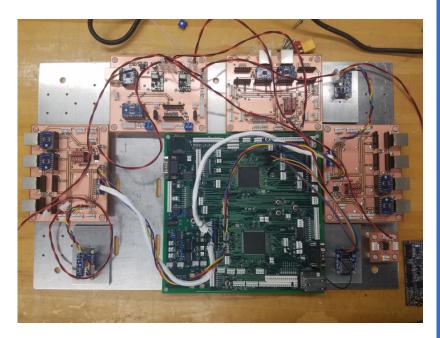
Maglev Actuators

Vavigation

Power

Control Systems

Pod Run


HARDWARE

Electronics Mounting

- PCB
- dI2C hubs
- Power distribution board
- SD card breakout
- Accelerometers

Peripheral Boards (dI2C)

- Types
 - o Motor control
 - o Actuator control
 - o Battery management

Team

Overview

Hardware

Magle

Actuators

Navigation


Power

Control Systems

Pod Run

PAYLOAD LEVITATION

- Arx Pax HE3.0 Hover Engines lift payload
 - o Brushless DC motor spins permanent magnet Halbach Array
- Hyperloop v2 team using four engines
 - Motor current does not exceed 50 A (continuous rating of motor controllers)
- Mounted to payload frame
 - Wheels serve as backup if levitation fails

UC SANTA BARBARA engineering

Team

Overview

Hardware

Maglev

Actuators

Navigation

Powe

Control Systems

Pod Run

PAYLOAD LEVITATION

- Motor Control
 - Analog throttle signal provided to control motor speed
- Motor Sensors
 - Tachometers implemented to read RPM (0-2800 RPM)
 - Current and temperature sensors implemented as well
- dI2C Motor Boards

Figure: Arx Pax HE3.0 Hover Engine UC SANTA BARBARA

Team

Overview

Hardware

Maglev

Actuators

Navigation

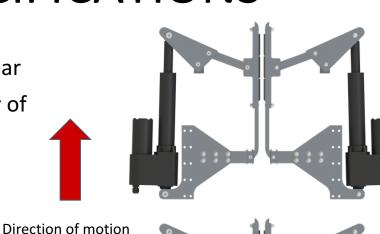
Power

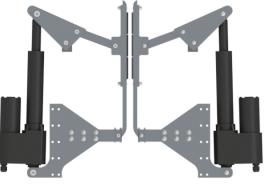
Control Systems

Pod Run

Figure: Brakes subsystem and placement on pod chassis

13


Maglev


Actuators

Navigation

BRAKING SPECIFICATIONS

- Friction Brakes Two Pairs
 - Located at the front and rear
 - Equal distance from center of mass
 - Reduces moment on I-beam
- Brake Controls & Feedback
 - PWM speed control and direction signal
 - Position feedback through I2C ADC

UC SANTA BARBARA engineering

Team

Overview

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

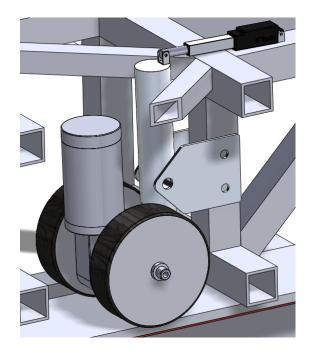
Pod Run

esting 14

Figure: Top view of system

UC SANTA BARBARA engineering

CONTACT SENSOR


- Pod Pusher Interface
- Optical Contact Sensor
 - Photo-reflective contact sensor indicates when pusher is mated with pod
 - o 3-inch detection range

Actuators Power Pod Run

SERVICE PROPULSION

- Post-Braking
 - Service propulsion drive for low speed service travel powered internally
 - Used after successful braking when the pod is fully stopped

UC SANTA BARBARA engineering

Team

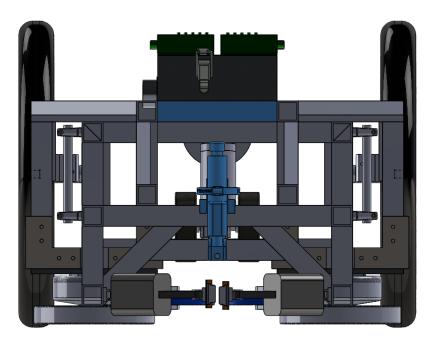
Overview

Hardware

Maglev

Actuators

Navigation


Powe

Control Systems

Pod Run

PAYLOAD ACTUATORS

- Vertical Service Lifter
 - Located opposite ends of pod
 - Raises payload to reduce magnetic drag for service propulsion
 - Uses linear actuators that push against the payload chassis

UC SANTA BARBARA engineering

Team

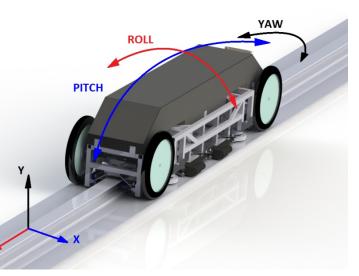
Overview

Hardware

Maglev

Actuators

Navigation


Powe

Control Systems

Pod Run

NAVIGATION

Direction	Sensor System
Х	I-Beam Short-Ranging
Y	Downward Short-Ranging
Z	Photoelectric Sensors Cart Wheel Tachometers Accelerometers
Roll	Downward Short-Ranging
Pitch	Downward Short-Ranging
Yaw	I-Beam Short-Ranging

Overview Hardware Maglev Actuators

UC SANTA BARBARA engineering

Navigation

Powe

Control Systems

Pod Run

Z-AXIS MOVEMENT

- Acceleration is measured directly with two accelerometers
- Distance is measured with photoelectric sensors that detect reflective strips placed 100 ft apart
- Velocity and distance are measured with tachometers placed on each of the four wheels

Overview lardware Maglev

uc santa barbara engineering

Actuators

Navigation

Power

Control Systems

Pod Run

SHORT-RANGING

Downward facing (4)

- Measures the pod's vertical offset from the track
- Y-Position, Roll, and Pitch
- I-beam facing (2)
 - Measures the pod's lateral offset from the I-Beam
 - X-direction and Yaw

UC SANTA BARBARA engineering

Team

Overview

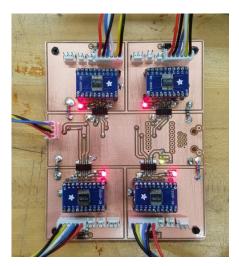
Hardware

Maglev

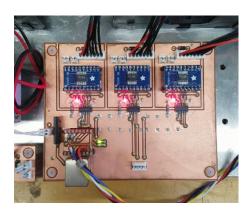
Actuators

Navigation

Powe


Control Systems

Pod Run


[esting

BATTERY MANAGEMENT

- Custom designed and fabricated battery management boards for each subsystem
- Monitor battery voltage, cell voltages, current, battery temperature

5 Cell Battery BMS board

6 Cell Battery Maglev BMS board

UC SANTA BARBARA engineering

Team

Overview

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

Pod Run

DATA & TELEMETRY

- Telemetry
 - All sensor data automatically sent to web app and logged on SD card
 - Sensor data transmitted in real time at 10 Hz
- Control Signals
 - Sent from web app
 - o Initialization
 - o Start
 - Emergency braking

UC SANTA BARBARA engineering

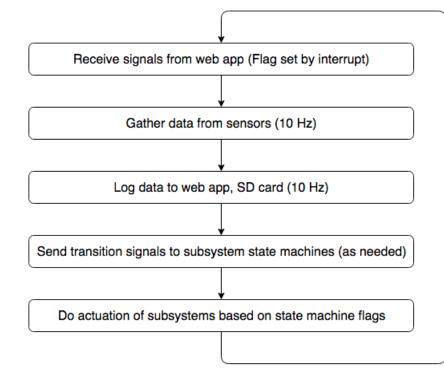
Team

Overview

Hardware

Maglev

Actuators


Vavigation

Power

Control

Pod Run

SOFTWARE ARCHITECTURE

Special Routines:

- Braking feedback / control (high frequency TBD)
 - Only during braking phase (with feedback)
 - Braking force adjusted dynamically
- Photoelectric strip detected
 - Triggers interrupt
 - Navigation processes immediately

Hardwar

UC SANTA BARBARA engineering

Maglev

Actuators

Navigation

Powe

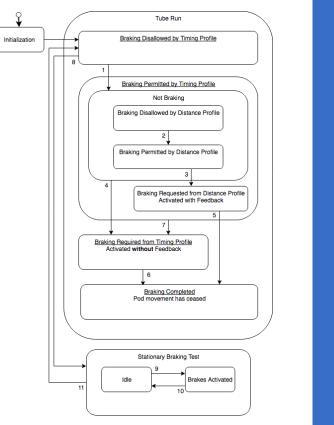
Control

Pod Run

esting

STATE MACHINES

State machines guard actuation of subsystems

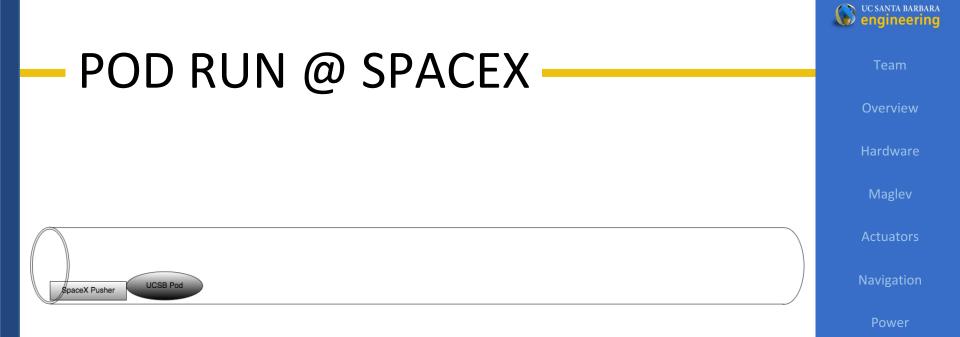

- States represent conditions of pod / system
- Signals issued based on sensor data
 - Ensure proper conditions are met
- Built on the QPnano framework

Subsystems with state machines

- Braking (see diagram)
- Magnetic levitation motors
- Payload actuators
- Service propulsion system

Subsystems without direct actuation don't need state machines

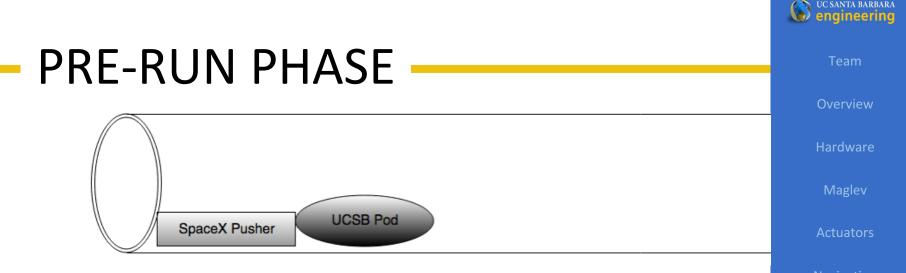
- Navigation
- Power



Actuators Control Pod Run

24

UC SANTA BARBARA engineering


Braking Subsystem State Machine

Control Systems

Pod Run

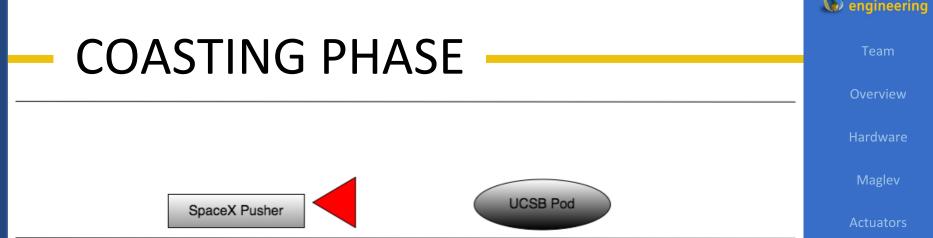
Testing

Phase lasts from pod entering tube to beginning of acceleration

Pre-Run Setup & Checks

- Establish web app connection
- Begin data monitoring / logging
- Calibrate sensors
- Run subsystem checks
- Engage maglev engines

Control Systems
Pod Run
Testing

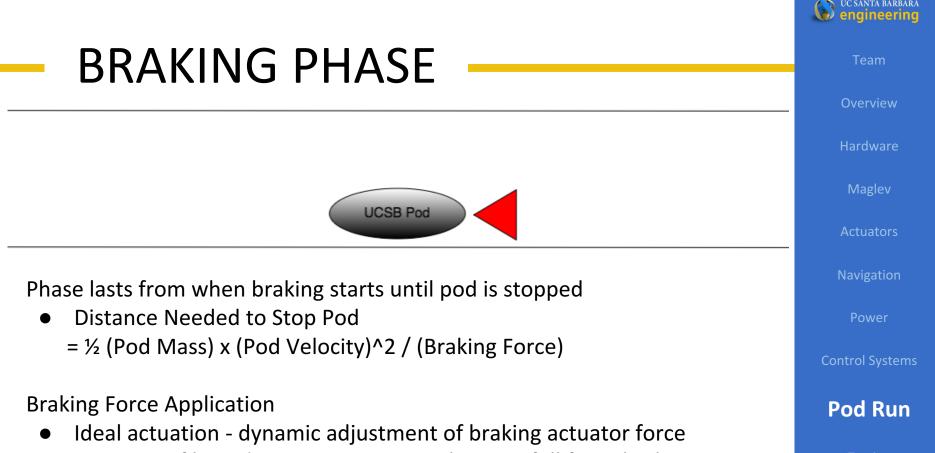

Phase lasts from pusher beginning movement until decoupling Pod

Navigation sensor data processed into unified measurement

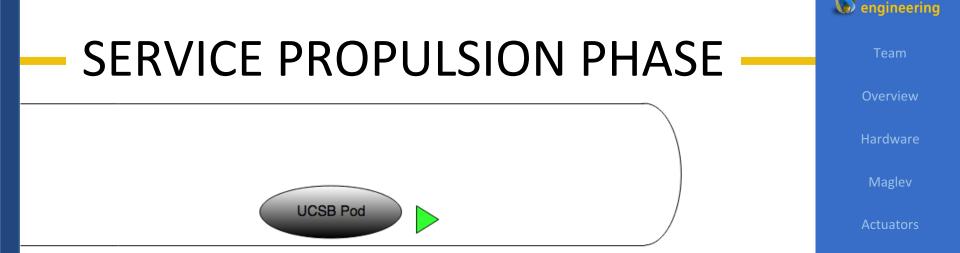
- Photoelectric sensors (2) highest accuracy
- Wheel tachometers (4) highest precision
 - Combined tach value coerced to 100 ft. interval upon strip detection if within 15ft. window
- Accelerometers, pusher sensor provide additional checks

Maglev Actuators Navigation Power Control Systems

Pod Run



Phase lasts from pusher decoupling to start of braking


Pod must determine when to brake

- Timing profile required by SpaceX provides allowable window
 - Start estimated time when coasting begins
 - O End last time to safely brake before end of tube
- Navigation determines distance within timing profile window
 - o Braking begins at window end even if distance not reached

Navigation Power Control Systems **Pod Run**

• Timing profile end or emergency signal trigger full force braking

Phase lasts from pod stopping until end of tube is reached

- Maglev engines disabled and payload raised to lower drag
- Service propulsion assembly actuator lowered
- Service motor propels pod slowly to end of tube

Test run is then complete!

Festing **30**

Control Systems

Pod Run

UC SANTA BARBARA

EMERGENCY SITUATIONS

Conditions monitored

- Over-temperature in systems or power supply
- Over-current condition in systems
- Abnormal voltage conditions (cell imbalance, etc.)
- Imbalance in maglev motor speeds
- Imbalance in braking actuator force/position

Mitigation actions performed

- Affected system disabled
- Battery isolation by disconnecting relays

PROTOTYPE TESTING

- Four engine hovering prototype
- Was used for testing and code development
- Systems/phenomenon tested:
 - Vibrational environment
 - Subtrack and electronics heating
 - Telemetry sensors
 - Tachometers

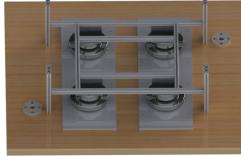


Figure: CAD Rendering of 4-Motor Prototype

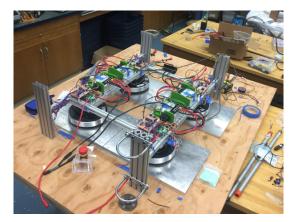


Figure: Working Prototype

Actuators Power Pod Run Testing

32

UC SANTA BARBARA engineering

VACUUM TESTING

- SpaceX Tube reaches 0.15 psi
- 20" inner diameter bell jar vacuum chamber
- Low pressure performance tests:
 - Maglev engines
 - Motor controllers
 - LIPO batteries
 - PCB & peripheral boards
 - Sensors
 - Actuators

Figure: Bell vacuum chamber for testing

UC SANTA BARBARA

CONCLUSION

SpaceX Testing Week and Hyperloop Competition II scheduled for Late August 2017

- Systems integration testing and preparation ongoing
- Our interns will continue system testing up to the competition date
- Opportunity for full scale on-site tests a week before the competition

UC SANTA BARBARA

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

Pod Run

ADVISORS

Thank you to Professor Johnson and Celeste for all of your help and guidance!

Team

Overview

Hardware

Maglev

Actuators

Navigation

Power

Control Systems

Pod Run

