## OSTRACAM Underwater Stereo Imaging

Oliver Thio, Paul Killam, Christina Lim, Caio Motta

#### OBJECTIVE

To aid Dr. Oakley and his team in their study of Ostracods by providing 3D video data of their bioluminescent displays

#### WHAT ARE OSTRACODS?

- OSTRACODS ARE SMALL, BIOLUMINESCENT SHRIMP, ABOUT THE SIZE OF A SESAME SEED.
- OSTRACODS USE BIOLUMINESCENT DISPLAYS TO WARD OFF PREDATORS AND ATTRACT MATES ONLY AT NIGHT WHEN THERE IS NO MOON.
- This results in impressive displays seen in warm, shallow waters around the world.



## WHY OSTRACODS?

- There are around 200 species of bioluminescent Ostracods, many having distinct differences in their bioluminescent displays
  - INTENSITY
  - Duration
  - Size
  - COORDINATION
- By cataloguing these displays and matching them with the genetic differences between Ostracod species, we can:
  - Further our knowledge of bioluminescence
  - LEARN HOW TO UTILIZE BIOLUMINESCENCE IN FUTURE GENETIC ENGINEERING EXPERIMENTS

## ADVERSE CONDITIONS

#### • System must:

- BE SUBMERGED IN SALT WATER
- BE PROTECTED AGAINST SALT WATER CORROSION
- BE OPERATED IN A FULL DIVING SUIT
- Handle differentials in pressure as it is brought deeper
- GATHER VISUAL DATA WITH NO AMBIENT LIGHT
- GATHER HIGH ENOUGH QUALITY DATA TO PERFORM 2D -> 3D STEREO MAPPING
- AT 30 FPS

#### THE CAMERA SYSTEM

- Two ultra-low-light Watec 910h cameras in a stereo configuration
- CONTAINED WITHIN CUSTOM-MADE WATERPROOF "CAMERA TUBES"
- 3D-Printed Camera mounts
- WATERPROOF CONNECTORS TO THE MAIN BOX
- VIDEO DATA IS SENT TO A MOBILE MULE<sup>TM</sup> 2100 2-CHANNEL MOBILE DVR



### WATERPROOFING

- O-RING SEALS ON THE CAMERA TUBES
- O-RING SEALS ON THE MAIN BOX
- WATERPROOF CONNECTORS FOR THE CAMERAS AND FUTURE ADDITIONAL INSTRUMENTATION





#### HARDWARE IMPROVEMENTS DELAYED TO YEAR 3

- New board using a lower-footprint decreased complexity microcontroller
- New Instrumentation:
  - GPS TRACKING
  - TEMPERATURE
  - WATER PRESSURE
  - PH
  - SALINITY

## VIDEO RESULTS

## POSTPROCESSING

- 1. CORRECT FOR THE FISHBOWL EFFECT GENERATED BY THE SPHERICAL APERTURE OF THE WATERPROOF CAMERA TUBE
- 2. Search for identifiable features from both cameras and map them together
- 3. GENERATE A RECTIFIED FRAME
- 4. Create a disparity map using the Rectified images
- 5. Use the disparity map to generate a depth map



# DISTORTION CORRECTION

- Using a Calibration Checkerboard, identify the Checkerboard Pattern
- Use Checkerboard intersections to estimate the camera parameters



## Rectification

- IDENTIFY SURFACE FEATURES
- MAP THEM TOGETHER



#### RECTIFICATION

• Overlay corrected frames from both cameras to generate a rectified frame, using the stereo parameters



## Disparity Map

• Apply block matching to the rectified images to generate a disparity map



## Disparity Map

 APPLY BLOCK MATCHING TO THE RECTIFIED IMAGES TO GENERATE A DISPARITY MAP



#### GENERATE DEPTH MAP

- Generate a depth map using the disparity map using geometry
- DISTANCE = BASE\_OFFSET \* FOCAL\_LENGTH / DISPARITY



### GENERATE DEPTH MAP

- Generate a depth map using the disparity map using geometry
- DISTANCE = BASE\_OFFSET \* FOCAL\_LENGTH / DISPARITY





BLUE IS CLOSER, YELLOW IS FURTHER

# DE-NOISING



