PenGUI

Winter Design Review

What is PenGUI?

- Working with Praevium Research, Inc., a Goleta-based company that researches and develops tunable lasers
- Task: redesign their developer kit user interface, replacing a previous web server approach
- Goal: make the developer kit as **user friendly, functional, and extensible** as possible, while keeping it **fully offline** (for practical and security reasons)
- The Product: a self contained kit used by researchers and developers to experiment with a tunable laser for their application

Applications

- Imaging
 - Non-invasive medical imaging without X-ray e.g. OCT
 - Non-destructive imaging in fragile parts e.g. batteries
- Raman Spectroscopy
 - Chemical detection (e.g. gas detection or mixture composition analysis)
 - Non-invasive glucose monitoring
- Fiber Optic Shape Sensing
 - Structural health monitoring
 - \circ Aerospace
 - Surgical navigation
- Lidar
- Optical data communication and storage

Development Team

Ayush Shah

Torin Schlunk

Team Lead

Simon Lai

Rylan Pow

Rodney Li

Block Diagram

Components

- Red Pitaya
- Seed Studio reTerminal
- Praevium DevKit/VSCEL

Components - Red Pitaya

- "The Swiss Army Knife For Engineers" Very powerful board
- On-board FPGA
- Used to control the VCSEL

Components - Seed Studio reTerminal

- Off-the-shelf component
- Contains a Raspberry Pi Compute Module
- Touchscreen support
- Ethernet Port (wireless connection supported too)
- USB Port
- Serves as an interface between user and the Red Pitaya/Laser

ere at use

Components - Praevium Enclosure for DevKit

- Houses the entire Devkit that controls the VCSEL
 - Devkit: laser, Red Pitaya, PCB
- Designed by Praevium team
- Originally not designed for reTerminal integration

Components - Praevium Devkit/VCSEL

- "Vertical Cavity Surface Emitting Laser"
 - Gas, Solid-State, Fiber, Semiconductor/"Diode" Lasers(Edge emitting and VCSELs)
- Uses as listed earlier
 - \circ imaging, spectroscopy, LiDAR, etc
- Designed by Praevium

Current Progress - GUI

• Refined user interface and user experience

• Added voltage and laser status toggles

• Added waveform generator

• Added temperature sensing and control

Current Progress - GUI

• Overall improved aesthetics (Carbon Theme)

	PRAEVIUM RESEARCH Laser Parameters	Temperature Voltage Status
	Pump Span Pump Current Voltage Tuning 300 mA 600 mA 1 V	OFF Laser Status
Cancel	Aux Boa SpanAux Boa CurrentEdit Sine Wave300 mA0 mAToggle Waveform	OFF Display Mode

Current Progress - Waveform and Temperature Editing

• Allows for Sine Wave and temperature manipulation

Current Progress - Dev Kit Frame

• New prototype modeled dev kit frame to support the reTerminal integration

Current Progress - Other Frame Prototypes

 More Prototyping: integrating wiring/port paths, including a PCB connection

Current Progress – Red Pitaya Replacement

Custom PCB currently in design phase to allow reTerminal to directly control the driver board.

DAC is needed to perform some low-speed signal generation. Candidate DAC, AD354xR evaluation board is undergoing testing for functionality and performance.

Current Progress – Communication

• Parameter changes and waveforms are correctly generated

Successful Testing

Current Progress – Communication

- Data being encoded as a JSON and sent from the reTerminal to the Red Pitaya over ethernet upon GUI button press
- Temperature is sent and received through UART on the driver board, and is now able to be controlled and feedback displayed on the reTerminal

Schedule

• Wrap up GUI, collect detailed feedback, and author documentation for potential future amendments

• Complete PCB design and integration

• Demoing for the Spring Quarter: Shape sensing, Spectroscopy, Imaging

Risk Analysis

- reTerminal long term durability
- Usefulness of replacing FPGA considering limited GPIO update frequency

Special Thanks

Chris, Bernie, Calisto, Anthony, Colin, and all the staff at Praevium Research

Professor Yogananda

TA Alex

