

An Autonomous System for Sorting Objects at the Edge

#### Meet the Team

#### **Geffen Cooper**

> Machine Learning



# Bethany LongEmbedded Systems



#### **Tyler Ekaireb**

Embedded Systems



# Vincent BenenatiControl Systems



Kat Copeland

Embedded Systems



## **Problem Formulation**

### The Problem

- Single-stream recycling have several issues:
  - Difficult classification
  - Contaminated recycling streams
  - Transportation cost and carbon-footprint
  - Multi-steam recycling have complicated rules
  - This results in:
    - Less than a third of recyclable waste is actually recycled[1]
    - Millions of tons of waste end up in landfills and the ocean





[1] https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials#NationalPicture

### **Our Solution**

- Trash is sorted autonomously & inexpensively on-site
  - Train for specific waste types
  - Prevents contamination
- Sorted waste is sent to specialized facilities

#### **Requirements**:

- Recognize different recycling streams
- Sort into bins
- Operate at the edge self-sufficiently with limited space/power/cost/communication





## System Overview

### Scrapsort

- Computer vision system to recognize trash on conveyor belt
  - Convolutional Neural Network (CNN) on microcontroller with hardware accelerator
- Ultrasonic sensors to trigger actions
- Lever arms to sort trash into bins



#### System Control Flow



## Hardware



### Board: MAX78000FTHR

- Low power & low cost
- Small form factor
- CNN accelerator
  - Custom tools available for training, quantizing, and synthesizing models

|                     |   | Power Supply           |
|---------------------|---|------------------------|
| MAX78000 Specs      |   |                        |
| Socket Core         | A | RM Cortex-M4           |
| Flash               |   | 512 KB                 |
| SRAM                |   | 128 KB                 |
| Core Clock<br>Speed | ι | Jp to 100 MHz<br>Motor |





#### Ultrasonic Sensors

motors

Simple and flexible interface to lacksquaretrigger interrupts for capturing images and activating stepper



#### Lever arm

#### • Pros

- Simple, robust design
- Fast
  - NEMA 23 Stepper Motor move quickly
- 20vac wait 
  Good response time
  - Easily upgradable
- Cons
  - Requires a lot of space between items

Conveyor Bel Motor



### Conveyor Belt

- Adjustable speed
- Adjustable custom 80/20 guardrails and camera mount
- Length: 59"
  - Long enough to partition sections for classification and sorting

120VAC Wall Socket

5V Buck Regulator







## Machine Learning

## Machine Learning

#### **CNN** Accelerator

- On-chip memory mapped peripheral
- Tools for quantization aware training
- Limited to basic operations: 3x3 kernels, ReLU activation, batch normalization

#### **Model Development Process**

- 1. Collect Data
- 2. Train multiple classification models
- 3. Quantization and Synthesis of model
- 4. On-board evaluation
- 5. Repeat

| Accelerator Specs    |                             |  |
|----------------------|-----------------------------|--|
| Weight Memory        | 432 KiB                     |  |
| Data Memory          | 512 KiB (32 KiB x 16)       |  |
| Clock Speed          | 50 MHz                      |  |
| Max Input Resolution | 91 x 90 (without streaming) |  |



#### Current CNN Architecture (Classification)



- 10 Convolution Layers (147,096 weights)
- 2 Fully Connected Layers (131,712 weights)
- Total: 278 KB ~ 63% weight memory
- Inference Time: 13.5 ms

#### **Classification and Detection**

- Under stable lighting, classification and detection work well
- Adjusted camera settings to account for lighting/distortion
  - Disable automatic exposure control
  - Decreased exposure time
- Dataset:
  - ~4k images for classification (1k per class)
  - ~1.5k images for detection (500 per class)





#### Full System in Action

#### Acknowledgements

Analog Devices:

• Brian Rush



#### UCSB:

- Professor Yogananda Isukapalli
- Professor B.S. Manjunath
- Christopher Cheney
- Brycen Westgarth
- Satish Kumar

![](_page_20_Picture_10.jpeg)