June 4th, 2021

UC Santa Barbara

Goleta

Smart Parking Lot

Presented by the Parkingbase Group

Andrew L, Finn L, Jun C, Luyao H

Senior CE Students College of Engineering, UC Santa Barbara

Roles

Andrew Lu Gateway Connection Web Application Frontend and Backend

Luyao Han Sensor Firmware

PCB Design Wireless Charging

Finn Linderman

Wireless Communication Power Management

Jun Cho LoRa Communication Virtual Demonstration Environment

Problem Statement

Drivers spend too much time in parking lots trying to find an open space. Many parking lots only have per-floor capacity indicators, and existing solutions are prohibitively expensive.

What if we could utilize low-cost sensors and a companion application to navigate drivers to empty parking spots faster, at a low cost to facility owners?

Parkingbase Overview

The goal is to design a smart parking lot that will direct drivers to the nearest open parking space on campus in an efficient, accurate and clean manner.

We accomplish this using:

- Small, inexpensive parking lot sensors with long-distance and low-power transmission
- Modern, open-source, and cloud-based software solutions
- Easy-to-use mobile interfaces

System Overview

"Magnetometer"

PCB Assembly

- Designed with Kicad
- ~ 30 mm x 50 mm
- Estimated Power Consumption: 22 mA peak
- 4-layer PCB

Wireless Communication

 $(\mathbf{0})$

 \bigcirc

P

Selection Criteria

Problem Requirements

- Long range
- Low power consumption
- High scalability

Our Solution: LoRa

LoRa - Range

Theoretical range comparison

Live testing in parking structure

P

Wireless Communication Comparison

Wireless Communication Methods Comparison

- Raspberry Pi Version 4
- Using RFM9x Library
- Connected to MongoDB backend
- Transmits:
 - Parking Space
 - o Status
 - 0 Time Stamp

RFM95 Module

LCD

Data Flow to Gateway

View the status of all spots within a parking lot

One tap to find and reserve an open spot

App will navigate you to your reserved spot

Remembers where you parked - view your parking history

P

Driver User Interface

Supports Google and UCSB NetID login

Admin User Interface

...

 $\leftarrow \rightarrow$

Editor

Add and remove parking lot sensors with one click on the map.

Usable on any web browser.

P

Software Frameworks / Technologies

- Progressive Web Application (PWA)
 - Works on all iOS and Android devices and looks like a native app
- Frontend built using React and Chakra UI
- Backend built using Next JS and deployed on Vercel
- Application database built using MongoDb

mongoDB

Parkingbase

Questions

Acknowledgements

Professor **Yogananda Isukapalli** Teaching Assistants **Boning Dong, Trenton Rochelle**

