

sp@t Team

Saurabh Gupta

Bryan Lavin-Parmenter

Brandon Pon

Neil O'Bryan

PCB, Power

Software Architecture

PCB, SoM

Peripherals

sp@t Vision

To build a device that will allow astronauts to path-find on unknown terrains in space

No trails, roads, or landmarks for way-finding

Localization is available (i.e. GPS)

Astronauts are walking, not traversing via rover

Astronauts are partially physically encumbered

Astronauts are not just navigating, but are multi-tasking while navigating terrain

sp**O**t Design System Architecture

sp@t Design PCB

sp@t Design Enclosure

20

sp**@t** Design Software Architecture

Software Methodology: Test-Driven Development

TDD: Testing before implementation

Write code tests that fail before writing new implementation logic

2P Review: All code must be reviewed and critiqued by another team member

spot Bill of Materials

SMT + PCB Fabrication	90
PYNQ	65
XBee Transceiver	43
XBee Antenna	8
Display	30
GPS Breakout	240
GPS Antenna	12
Rangefinder	55
Haptic Motor + Controller	10
Heart Rate Sensor	20
Camera	69

Total

approx. \$650

Interface PCB with peripherals

Continue building software architecture and testing protocols

Prepare for PCB spin #2

sp@t Collaborators

Dr. Luke Theogarajan University of California, Santa Barbara

Dr. Jessica Marquez NASA

Dr. Richard Joyce

