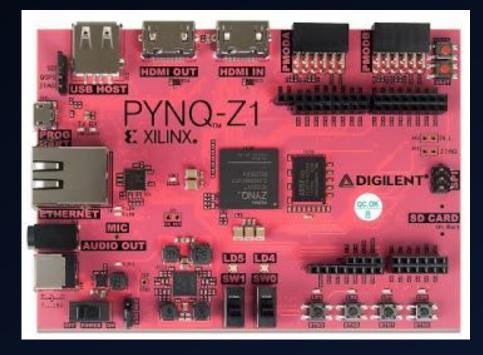
TiresiaScope Fall Quarter Design Review

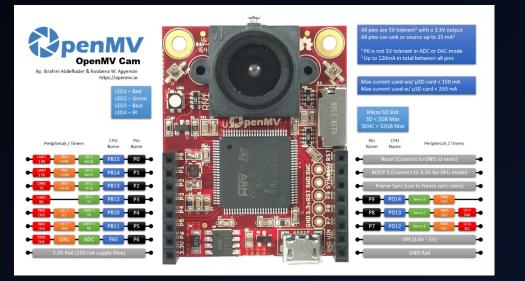
DEVON PORCHER, JOHN BOWMAN, BRIAN YOUNG, TIMOTHY KWONG, TREVOR HECHT

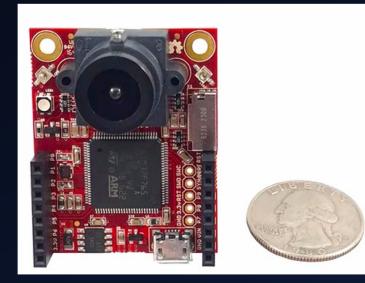
Introduction - What is the TiresiaScope?


- A proximity-sensing device for the blind
- Detects nearby objects with ranging sensors, recognizes text on signs with camera
- Relays information to user through sound: musical tones for object location, synthesized speech for text reading

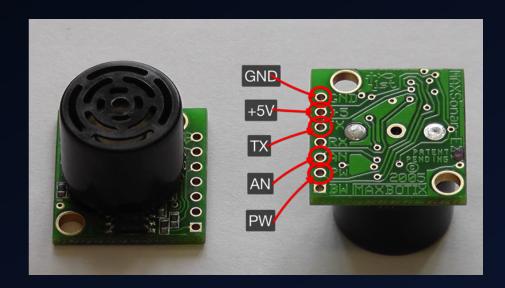
Development Team

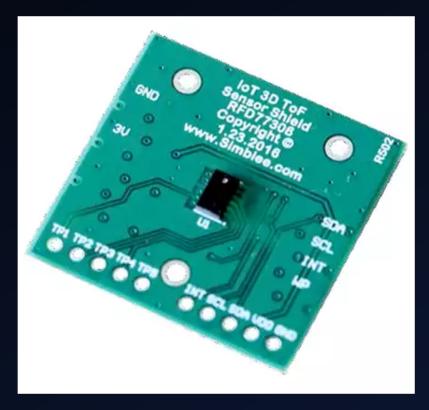
- Devon Porcher: Team Leader, Prototyping, Software Design
- John Bowman: System Design Lead, Software Design
- Brian Young: PCB Design Lead, System Design
- Timothy Kwong: Software Design Lead
- Trevor Hecht: Apparatus Design Lead


PYNQ

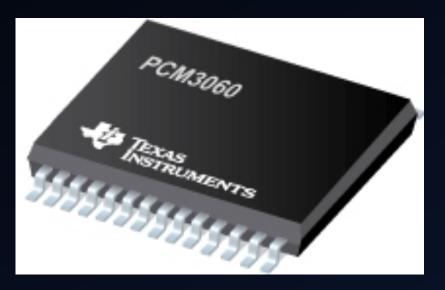

- Dual-Cortex ARM Cortex A9 processor supports coding in Python
- Individual Microblaze processors on FPGA control I/O for arduino and PMOD headers
- Microblazes communicate with processor using shared memory
- HDMI, USB, Ethernet also supported
- Audio out is mono only

Camera: OpenMV M7

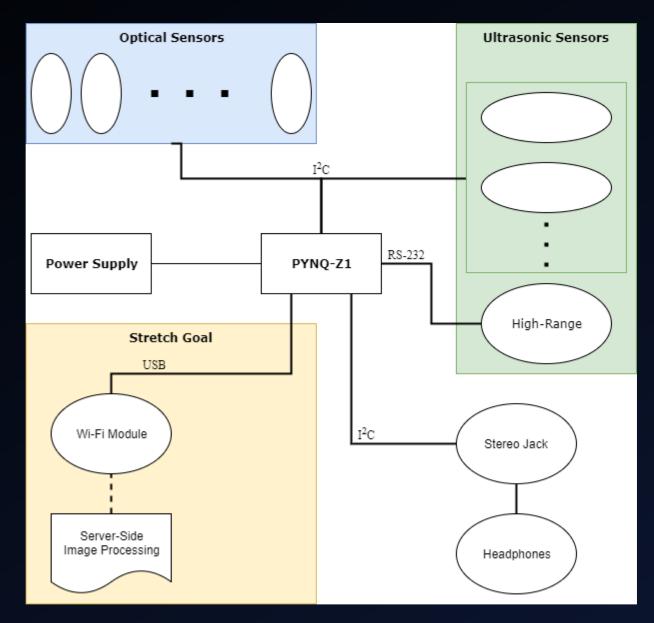

- On board STM32F765VI ARM Cortex M7 processor running at 216MHz with 512KB of RAM and 2MB of flash
- The OV7725 image sensor is capable of taking 640x480 8-bit grayscale images or 320x240 16-bit RGB565 images at 30 FPS


Ultrasonic Sensor: Ultrasonic Range Finder - LV-MaxSonar-EZ1

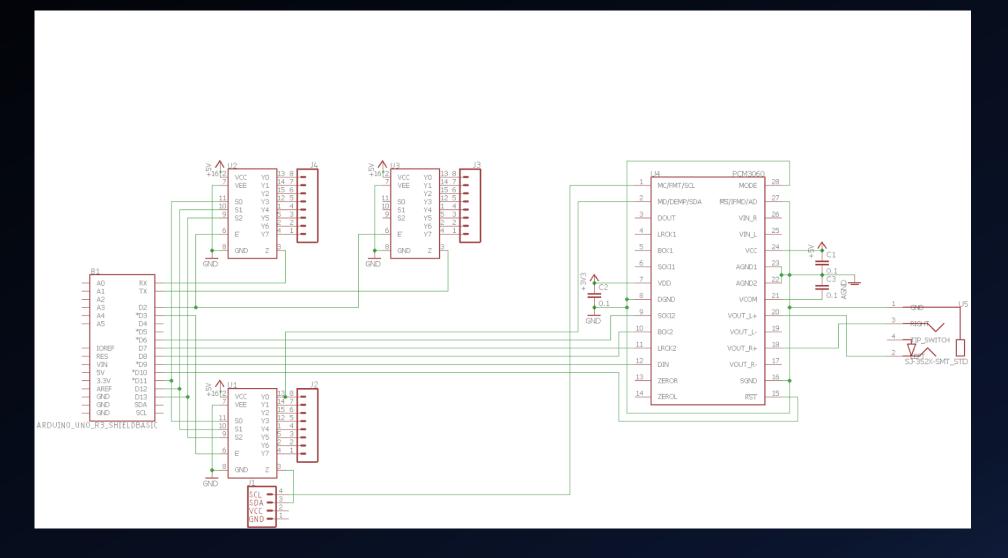
- Detection range: 160mm to 6.45m
- 20-Hz refresh rate
- Reliable and stable range data
- Pulse-Width, Analog, Pseudo-UART Interface options
- Operates at 5V

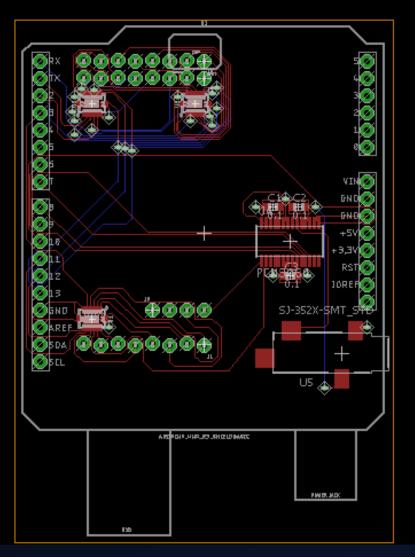

Optical Sensor: Simblee™ IoT 3D ToF Sensor Module

- Detection range: 100 mm to 2 meters
- 10-Hz refresh rate
- Breakout Board for mounting
- I2C interface
- Operates at 3.3V



Audio Codec: PCM3060


- Stereo audio output (and input)
- SPI or I2C control interface
- I2S, left-justified or right-justified formats for audio interface
- Used commonly in digital TVs


Block Diagram

Printed Circuit Board Schematic

Printed Circuit Board Routing

Software

Python is used for the backend processing

Sensors

- Converts sensor value inputs into noise frequency outputs of a certain tone depending on the range
- Uses multithreading in order to have each sensor read and output values independently

Camera

Will capture images caught into words and output using text-to-speech

Wearable Apparatus

Current plan:

 Skateboard helmet, with sections removed to make space for mounting

Mounting:

- PYNQ set into top of the helmet
- Camera at front
- Sensors distributed around all sides

Critical Elements

Text Recognition with the OpenMV camera

• Has on-board facial recognition, but not text recognition

Reliability of sensors

- Detecting lower objects
- Lighting for reliable images

Bill	of M	lateria	١s

	Part Label	Manufacturer	Manufacturer Part Number	Vendor	Vendor Part Number	Package/ Cell	Pins	Total Units	Unit Price	Total Price	Description
PCB Components	s										
Audio	o Codec 1	Texas Instruments	PCM3060PWR	Digi-Key	296-38201-1-ND	TSSOP, SMT	24	1	\$5.65	\$5.65	Stereo Audio Codec
Head	dphone Jack (CUI Inc.	SJ-3523-SMT-TR	Digi-Key	CP-3523SJTR-ND	Custom (Stereo Jack), SMT	4	1	\$1.02		3.5mm Stereo Jack
8-Wa	ay Multiplexer	Vexperia USA Inc.	74HC4051BQ,115	Digi-Key	1727-6049-1-ND	VFQFN, SMT	16	3	\$0.45	\$1.35	8 x 1 Multiplexer/Demultiplexer
8-Pin	n Header 💡	Sullins Connector Solutions	GRPB081VWVN-RC	Digi-Key	S9014E-08-ND	Through-Hole	8	3	\$0.72	\$2.16	0.50" 8-Position Header Connector
4-Pin	n Header	Sullins Connector Solutions	GRPB041VWVN-RC	Digi-Key	S9014E-04-ND	Trough-Hole	4	1	\$0.37	\$0.37	0.50" 4-Position Header Connector
								Т	otal Cost:	\$10.55	5
Headset Compon	nents										
PYNO	Q Microprocessor	Digilent	6003-410-017	Digilent	6003-410-017	Development Board	54	1	\$100.00	\$100.00	Python Productivity for Zyng
Came	era 🤶	SparkFun Electronics	SEN-14186	SparkFun Electronics	SEN-14186	Breakout Board	16	1	\$68.75	\$68.75	OpenMV M7 Camera w/ ARM Processor
Optic	cal Sensor Board 🥖	Adafruit Industries LLC	3317	Digi-Key	1528-1814-ND	Evaluation Board	7	8	\$14.95	\$119.60	VL53L0X Evaluation Board, 2m Ranging
Ultras	sonic Sensor	SparkFun Electronics		Digi-Key	1568-1311-ND	Evaluation Board	7	8	\$26.25	\$210.00	LV-MAX Ultrasonic Range Finder
								Т	otal Cost:	\$498.35	i
Miscellaneous Pa	uts										
Helm	net Mount					N/A	N/A	1	TBD		3D-Printed Attachments for Components
Helm	net					N/A	N/A	1	TBD	TBD	Skateboard Helmet
Head	dphones					N/A	N/A	1	TBD	TBD	Stereo Headphones
								T	otal Cost:	TBD)

Conclusion

Moving Forwards:

- Prototyping full sensor system
- Camera functionality
- Designing software to function with the sound system

Thank you to professor Yogananda Isukapalli, Celeste Bean, and Caio Motta

Questions?