Mar 17 (Thu) @ 11:00am: "Digital Non-binary Spiking Communication and Computation Channel," Carrie Hartley Segal, ECE PhD Defense
https://ucsb.zoom.us/j/87813956953
Abstract
In the search for intelligent silicon, the energy costs of traditional sensing and computation are barriers to progress and are forcing new modalities for communication, computation, and storage. Conventional signaling (discrete binary digital, analog level) suffers from non-idealities due to physical noise on large wires between miniature transistors. The errors found in the communication channels between the devices cause increased power demands because a classical computation must use enough energy to compute and transmit the answer across wires. This work combines recent advances in computation and communication, to simultaneously sense and transmit information acquired while sending the data through a spiking communication channel with additional computation capabilities.
Spiking or pulse-based asynchronous computation and communication schemes indicate additional energy bounds useful for understanding noisy answers. The use of pulse signals provide behaviorally robust and scalable system architectures for novel encoders. The encoders take advantage of hierarchical uneven fractional connectivity to transmit data during a space-time computation for the purposes of neuromorphic communication. These encoders enable semi-intelligent sensors capable of efficient data transfer from practical CMOS mixed-signal race logic integrated circuits.
Bio
Carrie Segal is a member of Systems Synthesis Lab at UCSB Computer Engineering Department, where she completed her Masters. She worked at Senseeker Engineering as a Digital & Neuromorphic Design Engineer while completing graduate studies at UCSB. Prior to arriving in California, Carrie completed a Bachelor of Science degree in Physics from State University of New York Stonybrook University.
Hosted by: Forrest Brewer
Submitted by: Carrie Segal <chsegal@ucsb.edu>